找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial and Geometric Group Theory; Dortmund and Ottawa- Oleg Bogopolski,Inna Bumagin,Enric Ventura Conference proceedings 2010 Birkh

[復(fù)制鏈接]
樓主: 威風(fēng)
31#
發(fā)表于 2025-3-27 00:45:50 | 只看該作者
Forum Dienstleistungsmanagementf successful, implies that the subgroup under consideration has solvable membership problem with a simple solution. The proof of the solvability of the membership problem relies on word combinatorics in an essential way.
32#
發(fā)表于 2025-3-27 01:49:28 | 只看該作者
33#
發(fā)表于 2025-3-27 05:52:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:50:41 | 只看該作者
Dennis Schendzielarz,Sascha Alavi and Kassabov and Matucci in [.]. Thanks to the interplay between the techniques, we produce a simplified point of view of conjugacy that allows us to easily recover centralizers and lends itself to generalization.
35#
發(fā)表于 2025-3-27 15:25:15 | 只看該作者
36#
發(fā)表于 2025-3-27 19:24:43 | 只看該作者
Forum Dienstleistungsmanagemente .., (.., x.) ∈ . ∈ N, be a family of groups isomorphic to . and marked by .+2 elements. If the sequence (..). is convergent in the space of marked groups and G is the corresponding limit we say that . is an .-limit group. The paper is devoted to a description of .-limit groups.
37#
發(fā)表于 2025-3-28 01:09:07 | 只看該作者
Combinatorial and Geometric Group Theory978-3-7643-9911-5Series ISSN 2297-0215 Series E-ISSN 2297-024X
38#
發(fā)表于 2025-3-28 03:56:14 | 只看該作者
39#
發(fā)表于 2025-3-28 06:44:27 | 只看該作者
Forum Dienstleistungsmanagementf successful, implies that the subgroup under consideration has solvable membership problem with a simple solution. The proof of the solvability of the membership problem relies on word combinatorics in an essential way.
40#
發(fā)表于 2025-3-28 14:25:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云和县| 丹阳市| 车致| 文昌市| 永和县| 博爱县| 巴青县| 临夏县| 大埔县| 岚皋县| 景谷| 浠水县| 平南县| 雷州市| 象州县| 乌兰察布市| 合江县| 咸丰县| 郑州市| 桐庐县| 和政县| 杨浦区| 景宁| 乐清市| 贺州市| 长武县| 沈阳市| 伊通| 高碑店市| 呼玛县| 都匀市| 宽城| 定州市| 广昌县| 布拖县| 东乡族自治县| 辉南县| 海林市| 赣州市| 社旗县| 赫章县|