找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VIII; Proceedings of the E Kevin L. McAvaney Conference proceedings 1981 Springer-Verlag Berlin Heidelberg 1981 L

[復制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:05:06 | 只看該作者
32#
發(fā)表于 2025-3-27 04:41:36 | 只看該作者
33#
發(fā)表于 2025-3-27 05:28:20 | 只看該作者
https://doi.org/10.1007/978-981-15-7175-6sion of the generation of graphs, digraphs, tournaments, self-complementary graphe, trees, and others. The present state of the art of graph generation is presented, together with some ideas on future prospects.
34#
發(fā)表于 2025-3-27 10:33:29 | 只看該作者
Stress and Sleepiness in the 24-h Societyogether in a well-behaved way we have a distributive block structure. We show that the orbits of the automorphism group of a distributive block structure on pairs of experimental units are precisely the sets which the combinatorial structure leads one to expect. Possible generalizations of this result are discussed.
35#
發(fā)表于 2025-3-27 16:18:07 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:03 | 只看該作者
37#
發(fā)表于 2025-3-28 01:23:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:57:12 | 只看該作者
Distributive block structures and their automorphisms,ogether in a well-behaved way we have a distributive block structure. We show that the orbits of the automorphism group of a distributive block structure on pairs of experimental units are precisely the sets which the combinatorial structure leads one to expect. Possible generalizations of this result are discussed.
39#
發(fā)表于 2025-3-28 07:36:06 | 只看該作者
A construction for a family of sets and its application to matroids,n applied to . then gives .. For each subset . of ., . for exactly one pair of .∈. and corresponding .∈.. When the family . is the basis collection of a matroid on . can be described simply in terms of the matroid structure. A polynomial is defined which, in this latter case, is the Tutte polynomial of the matroid.
40#
發(fā)表于 2025-3-28 10:57:45 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
读书| 麦盖提县| 台北县| 长治市| 临武县| 德昌县| 怀宁县| 额尔古纳市| 景泰县| 蒙城县| 临潭县| 郴州市| 宜良县| 肃南| 南丰县| 江华| 荣成市| 道孚县| 台东县| 松溪县| 平利县| 武安市| 元阳县| 永丰县| 三门峡市| 镇远县| 太仆寺旗| 南宫市| 龙门县| 北碚区| 元谋县| 茂名市| 庆元县| 射阳县| 府谷县| 永顺县| 冀州市| 河北省| 方正县| 寻乌县| 巴林右旗|