找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VIII; Proceedings of the E Kevin L. McAvaney Conference proceedings 1981 Springer-Verlag Berlin Heidelberg 1981 L

[復制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 11:14:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:07:30 | 只看該作者
Katherine A. Duggan,Zlatan Kri?ano that no two adjacent vertices in H′ are of the same colour. Then any two vertices in G are connected by a hamiltonian path if and only if G contains an edge joining two blue vertices and an edge joining two red vertices. This result enables us to characterize abelian group graphs G in whichany two vertices are connected by a hamiltonian path.
13#
發(fā)表于 2025-3-23 20:35:48 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:56 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:36:08 | 只看該作者
Connected subgraphs of the graph of multigraphic realisations of a degree sequence, by taking any two vertices of ., say . and ., and finding a path between them which preserves any previously chosen edge of multiplicity . that occurs in both . and .. The construction of this path also establishes best possible upper and lower bounds on the length of the shortest path between any two vertices of ..
18#
發(fā)表于 2025-3-24 18:21:45 | 只看該作者
Enumeration of binary phylogenetic trees,ree is meant one in which every point has degree 1 or 3. The exact and asymptotic numbers of binary phylogenetic trees are determined under the presence or absence of two additional conditions on the labelling. The optional constraints studied require nonempty label sets to be singletons, and that only endpoints be labelled.
19#
發(fā)表于 2025-3-24 21:17:01 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:02 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/c/image/229933.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台南县| 神木县| 夏河县| 呼伦贝尔市| 阳原县| 前郭尔| 大姚县| 铅山县| 宁强县| 山阴县| 北辰区| 康保县| 玛多县| 永春县| 西充县| 百色市| 日土县| 和静县| 汉沽区| 新田县| 旌德县| 策勒县| 顺昌县| 徐水县| 咸丰县| 文水县| 桂东县| 仲巴县| 乌兰察布市| 枣庄市| 航空| 茌平县| 平凉市| 奉贤区| 汉川市| 和平县| 合作市| 黔西县| 镇江市| 麟游县| 望都县|