找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Collected Papers; Volume I 1955-1966 Bertram Kostant,Anthony Joseph,Shrawan Kumar,Michè Book 2009 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Johnson
21#
發(fā)表于 2025-3-25 07:23:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:08:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:25:30 | 只看該作者
On Differential Geometry and Homogeneous Spaces II,We retain the notation of the preceding paper.. We will say that . is effective relative to . if . contains no ideal of ..
24#
發(fā)表于 2025-3-25 19:29:51 | 只看該作者
A Characterization of the Classical Groups,By one method of classification there are three types of (complex, connected) classical groups, (a) .(.), (b) .(.), and (c) .(.). So designated, each type is given as a specific group of matrices. It is perhaps neater (and for us more pertinent) to describe these groups by means of the special linear representation which each type admits.
25#
發(fā)表于 2025-3-25 21:52:16 | 只看該作者
The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group,Let . be a complex simple Lie algebra and let . be the adjoint group of g. It is by now classical that the Poincaré polynomial ..(.) of . factors into the form
26#
發(fā)表于 2025-3-26 02:42:33 | 只看該作者
27#
發(fā)表于 2025-3-26 06:19:36 | 只看該作者
Lie Group Representations On Polynomial Rings,Let . be a group of linear transformations on a finite dimensional real or complex vector space .. Assume . is completely reducible as a .-module. Let . be the ring of all complex-valued polynomials on ., regarded as a .-module in the obvious way, and let . ? . be the subring of all .-invariant polynomials on ..
28#
發(fā)表于 2025-3-26 12:09:30 | 只看該作者
Lie Group Representations on Polynomial Rings,Let . be a group of linear transformations on a finite dimensional real or complex vector space .. Assume . is completely reducible as a .-module. Let . be the ring of all complex-valued polynomials on ., regarded as a .-module in the obvious way, and let . ? . be the sub-ring of all .-invariant polynomials on ..
29#
發(fā)表于 2025-3-26 15:21:14 | 只看該作者
Lie Algebra Cohomology and Generalized Schubert Cells,This paper is referred to as Part II. Part I is [4], The numerical I used as a reference will refer to that paper. A third and final part, . is also planned.
30#
發(fā)表于 2025-3-26 19:16:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榕江县| 太湖县| 罗城| 增城市| 福贡县| 祁阳县| 长垣县| 黄梅县| 乌鲁木齐市| 固原市| 田阳县| 金门县| 伊宁县| 色达县| 新泰市| 满城县| 疏附县| 泽州县| 资兴市| 芜湖县| 资溪县| 宕昌县| 定襄县| 荆门市| 会东县| 花莲市| 北辰区| 乌拉特前旗| 肥东县| 阳新县| 丰都县| 贡觉县| 崇信县| 密云县| 镶黄旗| 莱芜市| 宜昌市| 英山县| 卓资县| 肥西县| 塔河县|