找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Collected Papers; Volume I 1955-1966 Bertram Kostant,Anthony Joseph,Shrawan Kumar,Michè Book 2009 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Johnson
11#
發(fā)表于 2025-3-23 09:57:37 | 只看該作者
Laura Bernardi,Dimitri MortelmansWe retain the notation of our previous article. Numbered theorems quoted here are also to be found in that article.
12#
發(fā)表于 2025-3-23 16:17:03 | 只看該作者
Claudia Recksiedler,Laura BernardiLet . be a Riemannian manifold with the corresponding affine connection, . an infinitesimal motion on ., and .. the tangent space at a point .. Let .. (the holonomy algebra) be the Lie algebra of the restricted holonomy group at . ? ..
13#
發(fā)表于 2025-3-23 18:16:35 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:41 | 只看該作者
https://doi.org/10.1007/978-3-8349-9266-6Let . be a complex simple Lie algebra and let . be the adjoint group of g. It is by now classical that the Poincaré polynomial ..(.) of . factors into the form
16#
發(fā)表于 2025-3-24 07:20:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:38 | 只看該作者
https://doi.org/10.1007/978-3-8349-9266-6Let . be a group of linear transformations on a finite dimensional real or complex vector space .. Assume . is completely reducible as a .-module. Let . be the ring of all complex-valued polynomials on ., regarded as a .-module in the obvious way, and let . ? . be the subring of all .-invariant polynomials on ..
18#
發(fā)表于 2025-3-24 15:33:16 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:29 | 只看該作者
20#
發(fā)表于 2025-3-25 03:14:37 | 只看該作者
On the Conjugacy of Real Cartan Subalgebras,Among the questions which have been raised concerning the structure of a connected semisimple Lie group are those relating to conjugacy of its Cartan subgroups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
棋牌| 永和县| 黄大仙区| 太保市| 临漳县| 象州县| 罗城| 盈江县| 阜新| 利津县| 万州区| 鹤壁市| 竹山县| 温州市| 廊坊市| 柏乡县| 连平县| 岢岚县| 丰都县| 连云港市| 麟游县| 青岛市| 乌鲁木齐县| 铅山县| 通州区| 即墨市| 嘉鱼县| 克山县| 白河县| 都昌县| 布拖县| 浮山县| 成安县| 平泉县| 绍兴市| 河津市| 聊城市| 元阳县| 江阴市| 宁阳县| 冷水江市|