找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Collected Papers; Volume I 1955-1966 Bertram Kostant,Anthony Joseph,Shrawan Kumar,Michè Book 2009 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: Johnson
11#
發(fā)表于 2025-3-23 09:57:37 | 只看該作者
Laura Bernardi,Dimitri MortelmansWe retain the notation of our previous article. Numbered theorems quoted here are also to be found in that article.
12#
發(fā)表于 2025-3-23 16:17:03 | 只看該作者
Claudia Recksiedler,Laura BernardiLet . be a Riemannian manifold with the corresponding affine connection, . an infinitesimal motion on ., and .. the tangent space at a point .. Let .. (the holonomy algebra) be the Lie algebra of the restricted holonomy group at . ? ..
13#
發(fā)表于 2025-3-23 18:16:35 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:56:41 | 只看該作者
https://doi.org/10.1007/978-3-8349-9266-6Let . be a complex simple Lie algebra and let . be the adjoint group of g. It is by now classical that the Poincaré polynomial ..(.) of . factors into the form
16#
發(fā)表于 2025-3-24 07:20:29 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:38 | 只看該作者
https://doi.org/10.1007/978-3-8349-9266-6Let . be a group of linear transformations on a finite dimensional real or complex vector space .. Assume . is completely reducible as a .-module. Let . be the ring of all complex-valued polynomials on ., regarded as a .-module in the obvious way, and let . ? . be the subring of all .-invariant polynomials on ..
18#
發(fā)表于 2025-3-24 15:33:16 | 只看該作者
19#
發(fā)表于 2025-3-24 21:16:29 | 只看該作者
20#
發(fā)表于 2025-3-25 03:14:37 | 只看該作者
On the Conjugacy of Real Cartan Subalgebras,Among the questions which have been raised concerning the structure of a connected semisimple Lie group are those relating to conjugacy of its Cartan subgroups.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄大仙区| 永春县| 博乐市| 云和县| 汾阳市| 巨野县| 黄浦区| 青阳县| 庐江县| 女性| 六枝特区| 桦南县| 永仁县| 泗水县| 汉源县| 濉溪县| 郁南县| 囊谦县| 勃利县| 淄博市| 从化市| 刚察县| 晋州市| 克东县| 松阳县| 吐鲁番市| 寿阳县| 青海省| 隆林| 西峡县| 朝阳市| 白朗县| 宜城市| 黔东| 柳河县| 汝州市| 平武县| 嵊泗县| 崇州市| 元朗区| 曲沃县|