找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Finite Groups; Alejandro Adem,R. James Milgram Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Algebraic K-th

[復制鏈接]
查看: 32830|回復: 49
樓主
發(fā)表于 2025-3-21 16:44:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cohomology of Finite Groups
編輯Alejandro Adem,R. James Milgram
視頻videohttp://file.papertrans.cn/230/229261/229261.mp4
概述Includes supplementary material:
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Cohomology of Finite Groups;  Alejandro Adem,R. James Milgram Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Algebraic K-th
描述Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo- logical algebra and algebraic K-theory. It arose primarily in the 1920‘s and 1930‘s independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N
出版日期Book 2004Latest edition
關鍵詞Algebraic K-theory; Algebraic topology; Cohomology; K-theory; algebra; classifying spaces; cohomology of g
版次2
doihttps://doi.org/10.1007/978-3-662-06280-7
isbn_softcover978-3-642-05785-4
isbn_ebook978-3-662-06280-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Cohomology of Finite Groups影響因子(影響力)




書目名稱Cohomology of Finite Groups影響因子(影響力)學科排名




書目名稱Cohomology of Finite Groups網(wǎng)絡公開度




書目名稱Cohomology of Finite Groups網(wǎng)絡公開度學科排名




書目名稱Cohomology of Finite Groups被引頻次




書目名稱Cohomology of Finite Groups被引頻次學科排名




書目名稱Cohomology of Finite Groups年度引用




書目名稱Cohomology of Finite Groups年度引用學科排名




書目名稱Cohomology of Finite Groups讀者反饋




書目名稱Cohomology of Finite Groups讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:11:30 | 只看該作者
Cohomology of Sporadic Simple Groups,cation of finite simple groups, [Gor], it was shown that there exist 26 simple groups not belonging to infinite families (i. e. not of alternating or Lie type) and we study ten of these groups here: four of the five Mathieu groups; the Janko groups .., .., ..; the O’Nan group . the McLaughlin group .; and finally the Lyons group ..
板凳
發(fā)表于 2025-3-22 03:20:46 | 只看該作者
地板
發(fā)表于 2025-3-22 07:50:38 | 只看該作者
https://doi.org/10.1007/978-3-662-06280-7Algebraic K-theory; Algebraic topology; Cohomology; K-theory; algebra; classifying spaces; cohomology of g
5#
發(fā)表于 2025-3-22 09:21:23 | 只看該作者
6#
發(fā)表于 2025-3-22 13:17:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:25:56 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:34 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:00 | 只看該作者
Renata Kun,Eszter Jóna,Andras GuttmanIn this final chapter we apply the techniques of group cohomology to the representation theory of finite groups.Given . a finite group we know that F (.) is semi-simple for any field of characteristic zero.
10#
發(fā)表于 2025-3-23 08:39:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
军事| 高清| 定安县| 广东省| 夏河县| 四会市| 河北省| 星座| 宜兴市| 凌源市| 秦安县| 仪陇县| 保康县| 垣曲县| 屯昌县| 连城县| 田阳县| 永善县| 辽宁省| 贞丰县| 沅陵县| 平和县| 西盟| 高碑店市| 阳泉市| 怀宁县| 上虞市| 营口市| 临漳县| 新竹市| 无锡市| 汝阳县| 西丰县| 南京市| 文山县| 忻州市| 九江县| 巴南区| 清新县| 万宁市| 革吉县|