找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Finite Groups; Alejandro Adem,R. James Milgram Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Algebraic K-th

[復制鏈接]
查看: 32836|回復: 49
樓主
發(fā)表于 2025-3-21 16:44:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Cohomology of Finite Groups
編輯Alejandro Adem,R. James Milgram
視頻videohttp://file.papertrans.cn/230/229261/229261.mp4
概述Includes supplementary material:
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Cohomology of Finite Groups;  Alejandro Adem,R. James Milgram Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Algebraic K-th
描述Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo- logical algebra and algebraic K-theory. It arose primarily in the 1920‘s and 1930‘s independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N
出版日期Book 2004Latest edition
關鍵詞Algebraic K-theory; Algebraic topology; Cohomology; K-theory; algebra; classifying spaces; cohomology of g
版次2
doihttps://doi.org/10.1007/978-3-662-06280-7
isbn_softcover978-3-642-05785-4
isbn_ebook978-3-662-06280-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Cohomology of Finite Groups影響因子(影響力)




書目名稱Cohomology of Finite Groups影響因子(影響力)學科排名




書目名稱Cohomology of Finite Groups網(wǎng)絡公開度




書目名稱Cohomology of Finite Groups網(wǎng)絡公開度學科排名




書目名稱Cohomology of Finite Groups被引頻次




書目名稱Cohomology of Finite Groups被引頻次學科排名




書目名稱Cohomology of Finite Groups年度引用




書目名稱Cohomology of Finite Groups年度引用學科排名




書目名稱Cohomology of Finite Groups讀者反饋




書目名稱Cohomology of Finite Groups讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:11:30 | 只看該作者
Cohomology of Sporadic Simple Groups,cation of finite simple groups, [Gor], it was shown that there exist 26 simple groups not belonging to infinite families (i. e. not of alternating or Lie type) and we study ten of these groups here: four of the five Mathieu groups; the Janko groups .., .., ..; the O’Nan group . the McLaughlin group .; and finally the Lyons group ..
板凳
發(fā)表于 2025-3-22 03:20:46 | 只看該作者
地板
發(fā)表于 2025-3-22 07:50:38 | 只看該作者
https://doi.org/10.1007/978-3-662-06280-7Algebraic K-theory; Algebraic topology; Cohomology; K-theory; algebra; classifying spaces; cohomology of g
5#
發(fā)表于 2025-3-22 09:21:23 | 只看該作者
6#
發(fā)表于 2025-3-22 13:17:30 | 只看該作者
7#
發(fā)表于 2025-3-22 17:25:56 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:34 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:00 | 只看該作者
Renata Kun,Eszter Jóna,Andras GuttmanIn this final chapter we apply the techniques of group cohomology to the representation theory of finite groups.Given . a finite group we know that F (.) is semi-simple for any field of characteristic zero.
10#
發(fā)表于 2025-3-23 08:39:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三门峡市| 江达县| 石城县| 青神县| 长乐市| 商洛市| 高邑县| 枣庄市| 隆化县| 镇安县| 广德县| 玛曲县| 兰西县| 榆树市| 大理市| 台湾省| 琼海市| 广宗县| 大丰市| 巢湖市| 泉州市| 五大连池市| 辽源市| 澄迈县| 吉安市| 扎鲁特旗| 南康市| 望奎县| 佛坪县| 牡丹江市| 五原县| 农安县| 太和县| 武定县| 富顺县| 马山县| 镇原县| 萍乡市| 黄浦区| 瓦房店市| 和平区|