找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Cohomology Theory of Topological Transformation Groups; Wu Yi Hsiang Book 1975 Springer-Verlag Berlin Heidelberg 1975 Cohomology.Kohomolog

[復(fù)制鏈接]
樓主: 預(yù)兆前
31#
發(fā)表于 2025-3-26 23:02:47 | 只看該作者
Generalities on Compact Lie Groups and ,-Spaces,re necessary for the subsequent development. Basic concepts and definitions will be adequately explained; and proofs of some fundamental theorems will also be included whenever short clear cut proofs are available.
32#
發(fā)表于 2025-3-27 03:51:24 | 只看該作者
Structural and Classification Theory of Compact Lie Groups and Their Representations,ometric viewpoint of transformation groups. An explicit and neat understanding of the orbit structure of the adjoint action of a compact Lie group . plays a central role in the classification theory developed by é. Cartan and H. Weyl. This more geometric approach is actually more natural and straigh
33#
發(fā)表于 2025-3-27 06:40:16 | 只看該作者
An Equivariant Cohomology Theory Related to Fibre Bundle Theory,e category of .-spaces which . reflects the cohomological behavior of both . and .. Following an idea of A. Borel [cf. B10], we shall define the . of a .-space . to be the . of the . of the . bundle, . → . → ., with the given .-space . as its typical fibre, namely ..
34#
發(fā)表于 2025-3-27 12:51:37 | 只看該作者
The Orbit Structure of a ,-Space , and the Ideal Theoretical Invariants of ,(,),ohomology .(.). From the viewpoint of transformation groups, those structures which are usually summarized as the . are certainly the most important geometric structures of a given .. Hence, it is almost imperative to investigate how much of the orbit structure of a given .-space . can actually be d
35#
發(fā)表于 2025-3-27 16:40:28 | 只看該作者
The Splitting Principle and the Geometric Weight System of Topological Transformation Groups on Acybserve that, in the setting of topological transformation groups, there is a simple direct relationship between actions on acyclic cohomology manifolds and actions on cohomology spheres, which can be explained as follows. For a given action on a cohomology sphere ., there is a natural induced action
36#
發(fā)表于 2025-3-27 20:29:04 | 只看該作者
The Splitting Theorems and the Geometric Weight System of Topological Transformation Groups on Coho groups. From the cohomological point of view, the projective spaces certainly have the simplest, and yet non-trivial, cohomology algebras, namely, truncate polynomial rings. Geometrically, the so-called projective transformation groups which are induced by the linear transformation groups still pro
37#
發(fā)表于 2025-3-27 23:15:47 | 只看該作者
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵台县| 凤阳县| 陵川县| 香格里拉县| 溆浦县| 财经| 光泽县| 阿克陶县| 灌云县| 新泰市| 浠水县| 阳新县| 广饶县| 罗山县| 普陀区| 永康市| 汪清县| 陵川县| 大英县| 宾阳县| 鄢陵县| 正镶白旗| 晋江市| 辽宁省| 黄龙县| 安乡县| 临西县| 南平市| 乐山市| 靖州| 靖西县| 阿拉善右旗| 隆德县| 宁阳县| 田东县| 屏山县| 堆龙德庆县| 肥东县| 平和县| 兴城市| 蒙阴县|