找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology Theory of Topological Transformation Groups; Wu Yi Hsiang Book 1975 Springer-Verlag Berlin Heidelberg 1975 Cohomology.Kohomolog

[復(fù)制鏈接]
樓主: 預(yù)兆前
21#
發(fā)表于 2025-3-25 04:09:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:18:01 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:09 | 只看該作者
The Orbit Structure of a ,-Space , and the Ideal Theoretical Invariants of ,(,),eometric structures of a given .. Hence, it is almost imperative to investigate how much of the orbit structure of a given .-space . can actually be determined from the algebraic structure of its equivariant cohomology .(.). To be more precise, let us formulate a few more specific problems as examples:
24#
發(fā)表于 2025-3-25 16:22:36 | 只看該作者
Structural and Classification Theory of Compact Lie Groups and Their Representations,tforward than the usual Lie-algebra-theoretical approach. Furthermore, such an approach will also provide us with valuable examples and insight for later investigation of topological transformation groups.
25#
發(fā)表于 2025-3-25 20:20:41 | 只看該作者
The Splitting Theorems and the Geometric Weight System of Topological Transformation Groups on Cohovide abundant interesting examples that we shall again call them “.”. In other words, projective spaces, endowed with a simple cohomology structure and an abundance of transformation groups, provide the ideal setting for the study of the cohomology theory of transformation groups.
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Le emozioni per lo storico medicoesult for the other case will follow automatically. In this chapter, we prefer to state the results for the case of acyclic cohomology manifolds because it is the directly applicable to the study of the local theory.
27#
發(fā)表于 2025-3-26 05:57:06 | 只看該作者
The Splitting Principle and the Geometric Weight System of Topological Transformation Groups on Acyesult for the other case will follow automatically. In this chapter, we prefer to state the results for the case of acyclic cohomology manifolds because it is the directly applicable to the study of the local theory.
28#
發(fā)表于 2025-3-26 11:47:05 | 只看該作者
29#
發(fā)表于 2025-3-26 15:25:56 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安徽省| 峡江县| 祁阳县| 淄博市| 巴彦县| 罗定市| 遵化市| 宣汉县| 临夏市| 大丰市| 济南市| 枝江市| 海南省| 惠来县| 灵石县| 徐汇区| 任丘市| 商南县| 青龙| 龙里县| 沂水县| 芦溪县| 六安市| 新建县| 淄博市| 石泉县| 内黄县| 衡水市| 九龙县| 宁都县| 六枝特区| 农安县| 丰原市| 英吉沙县| 安化县| 泽州县| 贵定县| 双柏县| 武川县| 汉寿县| 凤山县|