找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology Theory of Topological Transformation Groups; Wu Yi Hsiang Book 1975 Springer-Verlag Berlin Heidelberg 1975 Cohomology.Kohomolog

[復(fù)制鏈接]
樓主: 預(yù)兆前
21#
發(fā)表于 2025-3-25 04:09:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:18:01 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:09 | 只看該作者
The Orbit Structure of a ,-Space , and the Ideal Theoretical Invariants of ,(,),eometric structures of a given .. Hence, it is almost imperative to investigate how much of the orbit structure of a given .-space . can actually be determined from the algebraic structure of its equivariant cohomology .(.). To be more precise, let us formulate a few more specific problems as examples:
24#
發(fā)表于 2025-3-25 16:22:36 | 只看該作者
Structural and Classification Theory of Compact Lie Groups and Their Representations,tforward than the usual Lie-algebra-theoretical approach. Furthermore, such an approach will also provide us with valuable examples and insight for later investigation of topological transformation groups.
25#
發(fā)表于 2025-3-25 20:20:41 | 只看該作者
The Splitting Theorems and the Geometric Weight System of Topological Transformation Groups on Cohovide abundant interesting examples that we shall again call them “.”. In other words, projective spaces, endowed with a simple cohomology structure and an abundance of transformation groups, provide the ideal setting for the study of the cohomology theory of transformation groups.
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Le emozioni per lo storico medicoesult for the other case will follow automatically. In this chapter, we prefer to state the results for the case of acyclic cohomology manifolds because it is the directly applicable to the study of the local theory.
27#
發(fā)表于 2025-3-26 05:57:06 | 只看該作者
The Splitting Principle and the Geometric Weight System of Topological Transformation Groups on Acyesult for the other case will follow automatically. In this chapter, we prefer to state the results for the case of acyclic cohomology manifolds because it is the directly applicable to the study of the local theory.
28#
發(fā)表于 2025-3-26 11:47:05 | 只看該作者
29#
發(fā)表于 2025-3-26 15:25:56 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海安县| 汝州市| 新兴县| 大余县| 松潘县| 沙湾县| 临朐县| 太和县| 大安市| 泰和县| 满洲里市| 铜山县| 抚远县| 朔州市| 泽库县| 亚东县| 台湾省| 桂平市| 新蔡县| 汪清县| 凯里市| 安阳县| 哈密市| 通山县| 贡嘎县| 香格里拉县| 林口县| 盘山县| 泸西县| 高密市| 鄯善县| 内江市| 新密市| 永和县| 得荣县| 塔河县| 吉安县| 九龙坡区| 七台河市| 新邵县| 仁布县|