找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory and Design Theory; Part I Coding Theory Dijen Ray-Chaudhuri Conference proceedings 1990 Springer-Verlag New York, Inc. 1990 C

[復制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 21:03:24 | 只看該作者
Self-Orthogonal Codes and the Topology of Spinor Groups,cribe the correspondence and discuss various techniques from the algebraic topology of Spin(n) which may be useful in studying self-orthogonal codes. In particular, Quillen’s results in equivariant cohomology theory coupled with some Morse theory may allow one to address certain questions on the minimum weight of doubly-even self-orthogonal codes.
32#
發(fā)表于 2025-3-27 03:28:50 | 只看該作者
33#
發(fā)表于 2025-3-27 07:29:13 | 只看該作者
34#
發(fā)表于 2025-3-27 11:13:35 | 只看該作者
Baer Subplanes, Ovals and Unitals,exploring further the notions that were introduced in [1]. There we defined the hull, ., of a design . over a finite field ., where . is a prime that divides the order . of the design: if . denotes the code of . over .., defined to be the space spanned by the characteristic functions of the blocks o
35#
發(fā)表于 2025-3-27 15:49:23 | 只看該作者
On the Length of Codes with a Given Covering Radius,st a code of codimension 11 and covering radius 2 which has length 64. We conclude with a table which gives the best available information for the length of a code with codimension . and covering radius . for 2 ≤ . ≤ 24 and 2 ≤ . ≤ 24.
36#
發(fā)表于 2025-3-27 21:29:08 | 只看該作者
37#
發(fā)表于 2025-3-27 22:30:10 | 只看該作者
38#
發(fā)表于 2025-3-28 02:33:45 | 只看該作者
Perfect Multiple Coverings in Metric Schemes,essary and sufficient condition is found to determine when a metric scheme admits a nontrivial perfect multiple covering. Results specific to the classical Hamming and Johnson schemes are given which bear out the relationship between .-designs, orthogonal arrays, and perfect multiple coverings.
39#
發(fā)表于 2025-3-28 09:22:21 | 只看該作者
40#
發(fā)表于 2025-3-28 10:38:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
客服| 凤翔县| 香港 | 蒲城县| 库车县| 丹棱县| 萍乡市| 淳安县| 洛宁县| 龙胜| 遂溪县| 紫金县| 根河市| 石首市| 房山区| 井冈山市| 新疆| 方正县| 张家界市| 凯里市| 乡宁县| 中牟县| 深水埗区| 宜城市| 台山市| 申扎县| 吉林市| 洞头县| 哈尔滨市| 惠来县| 嵩明县| 武乡县| 定陶县| 胶州市| 上林县| 福清市| 江西省| 青冈县| 张北县| 石河子市| 古交市|