找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory and Design Theory; Part I Coding Theory Dijen Ray-Chaudhuri Conference proceedings 1990 Springer-Verlag New York, Inc. 1990 C

[復制鏈接]
樓主: 萬能
11#
發(fā)表于 2025-3-23 11:22:32 | 只看該作者
12#
發(fā)表于 2025-3-23 16:08:30 | 只看該作者
https://doi.org/10.1007/978-3-030-10504-4cribe the correspondence and discuss various techniques from the algebraic topology of Spin(n) which may be useful in studying self-orthogonal codes. In particular, Quillen’s results in equivariant cohomology theory coupled with some Morse theory may allow one to address certain questions on the min
13#
發(fā)表于 2025-3-23 19:07:31 | 只看該作者
Fumitaka Abe,Masahiko Mori,Shingo NakamuraLet . be a given .-stage .-sequence over the binary field F., whose minimal polynomial will be denoted by .. We know that . is primitive and of degree .. Denote ., . ≥ 0 and call . the .-th state of the .-stage .-sequence .. Let . be a Boolean polynomial in . variables ..,..., .. and of degree .. Obviously r ≤ n.
14#
發(fā)表于 2025-3-24 00:04:41 | 只看該作者
Masahiko Otani,Lipeng Zheng,Naoto KawakamiWe prove two theorems which bound the number of pairs of unjoined points in a partial plane ∑ defined on a finite number υ of points. The bounds are obtained under assumptions on the number of lines in ∑ together with the assumption that no line contains more than υ – 3 points.
15#
發(fā)表于 2025-3-24 05:40:24 | 只看該作者
16#
發(fā)表于 2025-3-24 07:27:52 | 只看該作者
17#
發(fā)表于 2025-3-24 14:11:50 | 只看該作者
18#
發(fā)表于 2025-3-24 15:49:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:02 | 只看該作者
Bounds on the Number of Pairs of Unjoined Points in a Partial Plane,We prove two theorems which bound the number of pairs of unjoined points in a partial plane ∑ defined on a finite number υ of points. The bounds are obtained under assumptions on the number of lines in ∑ together with the assumption that no line contains more than υ – 3 points.
20#
發(fā)表于 2025-3-25 00:48:38 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
百色市| 民权县| 和静县| 宁武县| 醴陵市| 邯郸市| 安远县| 桑日县| 肃南| 邯郸县| 玉环县| 新河县| 翁牛特旗| 泰顺县| 巴青县| 鄯善县| 乐业县| 含山县| 玉屏| 尚义县| 呼和浩特市| 南和县| 玛多县| 纳雍县| 察雅县| 思茅市| 万山特区| 苍南县| 永德县| 麻江县| 彭泽县| 涿鹿县| 庆云县| 社会| 泾川县| 阳曲县| 宁德市| 定安县| 小金县| 林芝县| 贺兰县|