找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory and Design Theory; Part I Coding Theory Dijen Ray-Chaudhuri Conference proceedings 1990 Springer-Verlag New York, Inc. 1990 C

[復制鏈接]
樓主: 萬能
21#
發(fā)表于 2025-3-25 06:51:36 | 只看該作者
Self-Dual Codes and Self-Dual Designs,We construct self-orthogonal binary codes from projective 2 - (., ., λ) designs with a polarity, . odd, and λ even. We give arithmetic conditions on the parameters of the design to obtain self-dual or doubly even self-dual codes. Non existence results in the latter case are obtained from rationality conditions of certain strongly regular graphs.
22#
發(fā)表于 2025-3-25 09:42:01 | 只看該作者
,Some Recent Results on Signed Graphs with Least Eigenvalues ≥ -2,A survey of some results concerning the class of sigraphs represented by root-systems .., n ∈ . and .. is given and some unsolved problems are described.
23#
發(fā)表于 2025-3-25 14:24:54 | 只看該作者
Coding Theory and Design Theory978-1-4613-8994-1Series ISSN 0940-6573 Series E-ISSN 2198-3224
24#
發(fā)表于 2025-3-25 16:41:28 | 只看該作者
Steven Footitt,William E. Finch-Savagest a code of codimension 11 and covering radius 2 which has length 64. We conclude with a table which gives the best available information for the length of a code with codimension . and covering radius . for 2 ≤ . ≤ 24 and 2 ≤ . ≤ 24.
25#
發(fā)表于 2025-3-25 20:52:41 | 只看該作者
Leónie Bentsink,Maarten Koornneefessary and sufficient condition is found to determine when a metric scheme admits a nontrivial perfect multiple covering. Results specific to the classical Hamming and Johnson schemes are given which bear out the relationship between .-designs, orthogonal arrays, and perfect multiple coverings.
26#
發(fā)表于 2025-3-26 03:57:08 | 只看該作者
27#
發(fā)表于 2025-3-26 08:03:40 | 只看該作者
28#
發(fā)表于 2025-3-26 10:37:26 | 只看該作者
On the Length of Codes with a Given Covering Radius,st a code of codimension 11 and covering radius 2 which has length 64. We conclude with a table which gives the best available information for the length of a code with codimension . and covering radius . for 2 ≤ . ≤ 24 and 2 ≤ . ≤ 24.
29#
發(fā)表于 2025-3-26 13:46:39 | 只看該作者
Perfect Multiple Coverings in Metric Schemes,essary and sufficient condition is found to determine when a metric scheme admits a nontrivial perfect multiple covering. Results specific to the classical Hamming and Johnson schemes are given which bear out the relationship between .-designs, orthogonal arrays, and perfect multiple coverings.
30#
發(fā)表于 2025-3-26 17:10:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
田林县| 定南县| 土默特右旗| 冷水江市| 莎车县| 桂东县| 彰化市| 富源县| 庆安县| 如皋市| 五大连池市| 洪雅县| 泸溪县| 济阳县| 安图县| 敦煌市| 东安县| 修水县| 体育| 渝北区| 招远市| 曲松县| 嘉荫县| 玉田县| 华池县| 镶黄旗| 贵阳市| 宁波市| 南溪县| 尼玛县| 黑龙江省| 正安县| 台东县| 新竹县| 嘉善县| 永安市| 衡东县| 普兰县| 英德市| 浠水县| 柘荣县|