找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Analysis and Related Topics; In Honor of Paul A. Paula Cerejeiras,Craig A. Nolder,Carmen Judith Van Conference proceedings 2018 S

[復制鏈接]
樓主: PEL
21#
發(fā)表于 2025-3-25 04:52:25 | 只看該作者
Marilyn Mehlmann,Miriam Sannum,Andre Benaim spinor space is to be interpreted as an irreducible representation of the spin group. In this article we twist the Dirac operator by replacing the spinor space with an arbitrary irreducible representation of the spin group. In this way, the operator becomes highly reducible, whence we determine its full decomposition.
22#
發(fā)表于 2025-3-25 08:46:28 | 只看該作者
23#
發(fā)表于 2025-3-25 15:25:50 | 只看該作者
,Lambda-Harmonic Functions: An?Expository Account,mpiled a list of known properties for . when . and present analogous properties for .. We close by discussing the .Poisson kernel, the function that solves the Dirichlet problem on the closed ball in ..
24#
發(fā)表于 2025-3-25 17:36:36 | 只看該作者
Some Applications of Parabolic Dirac Operators to the Instationary Navier-Stokes Problem on Conformroblems on cylinders and tori. Solutions are represented in terms of integral operators involving explicit expressions for the Cauchy kernel that are associated to the parabolic Dirac operators acting on spinor sections of these manifolds.
25#
發(fā)表于 2025-3-25 20:29:16 | 只看該作者
,From Hermitean Clifford Analysis to?Subelliptic Dirac Operators on Odd Dimensional Spheres and Othex variables. We also show that the maximal subgroup that preserves these operators are generated by translations, dilations and actions of the unitary n-group. So the operators are not invariant under Kelvin inversion. We also show that the Dirac operators constructed via two by two matrices in Herm
26#
發(fā)表于 2025-3-26 00:09:33 | 只看該作者
On Some Conformally Invariant Operators in Euclidean Space,on to develop properties of some conformally invariant operators in the Rarita-Schwinger setting. We also study properties of some other Rarita-Schwinger type operators, for instance, twistor operators and dual twistor operators. This work is also intended as an attempt to motivate the study of Rari
27#
發(fā)表于 2025-3-26 08:21:43 | 只看該作者
28#
發(fā)表于 2025-3-26 08:28:16 | 只看該作者
29#
發(fā)表于 2025-3-26 13:37:30 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
浦北县| 大竹县| 泰州市| 北京市| 台山市| 纳雍县| 宁远县| 河西区| 南宁市| 涡阳县| 额敏县| 新野县| 太原市| 秭归县| 柳林县| 措美县| 兖州市| 石景山区| 嘉善县| 昂仁县| 玉田县| 星子县| 崇州市| 遵化市| 龙口市| 资中县| 迁安市| 长阳| 香河县| 海林市| 廉江市| 新安县| 凤庆县| 融水| 和林格尔县| 保定市| 福清市| 卫辉市| 原阳县| 漳州市| 肥西县|