找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Analysis and Related Topics; In Honor of Paul A. Paula Cerejeiras,Craig A. Nolder,Carmen Judith Van Conference proceedings 2018 S

[復(fù)制鏈接]
樓主: PEL
11#
發(fā)表于 2025-3-23 09:49:37 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/c/image/227355.jpg
12#
發(fā)表于 2025-3-23 15:36:23 | 只看該作者
Sigurd Solhaug Nielsen,J?rgen KleinWe are giving a characterization of all linear first order partial differential operators with Clifford-algebra-valued coefficients that are associated to the meta-.-monogenic operator. As an application, the solvability of initial value problems involving these operators is shown.
13#
發(fā)表于 2025-3-23 22:02:20 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:41 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:01 | 只看該作者
Some Applications of Parabolic Dirac Operators to the Instationary Navier-Stokes Problem on Conformroblems on cylinders and tori. Solutions are represented in terms of integral operators involving explicit expressions for the Cauchy kernel that are associated to the parabolic Dirac operators acting on spinor sections of these manifolds.
16#
發(fā)表于 2025-3-24 06:34:51 | 只看該作者
Decomposition of the Twisted Dirac Operator, spinor space is to be interpreted as an irreducible representation of the spin group. In this article we twist the Dirac operator by replacing the spinor space with an arbitrary irreducible representation of the spin group. In this way, the operator becomes highly reducible, whence we determine its full decomposition.
17#
發(fā)表于 2025-3-24 12:17:03 | 只看該作者
18#
發(fā)表于 2025-3-24 15:25:26 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:16 | 只看該作者
Roopal Gupta,Tanuja Sharma,Anupama Prasharmpiled a list of known properties for . when . and present analogous properties for .. We close by discussing the .Poisson kernel, the function that solves the Dirichlet problem on the closed ball in ..
20#
發(fā)表于 2025-3-25 01:43:13 | 只看該作者
Sharda S. Nandram,Vanessa C. M. Englertroblems on cylinders and tori. Solutions are represented in terms of integral operators involving explicit expressions for the Cauchy kernel that are associated to the parabolic Dirac operators acting on spinor sections of these manifolds.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云梦县| 互助| 无为县| 老河口市| 五原县| 齐河县| 四会市| 长宁区| 建水县| 通许县| 浮梁县| 南召县| 商城县| 嘉祥县| 拜泉县| 湖南省| 元氏县| 多伦县| 孝义市| 白沙| 伽师县| 宁强县| 平乐县| 罗山县| 若羌县| 连江县| 临海市| 稷山县| 吴堡县| 东台市| 玛多县| 高密市| 二连浩特市| 吉木乃县| 新乡市| 施秉县| 江阴市| 井研县| 东台市| 绥芬河市| 思南县|