找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 2: Clifford A John Ryan,Wolfgang Spr??ig Book 2000 Springer Scienc

[復(fù)制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:53:02 | 只看該作者
32#
發(fā)表于 2025-3-27 04:04:01 | 只看該作者
33#
發(fā)表于 2025-3-27 05:42:30 | 只看該作者
34#
發(fā)表于 2025-3-27 09:53:40 | 只看該作者
The Geometry of Generalized Dirac Operators and the Standard Model of Particle Physicsodel of particle physics in a unified way. In this frame the fundamental objects are generalized Dirac operators, and the geometrical setup is that of a Clifford module bundle over an even dimensional closed Riemannian manifold.
35#
發(fā)表于 2025-3-27 14:20:20 | 只看該作者
Hypercomplex Derivability — The Characterization of Monogenic Functions in ?, by Their Derivativeonogenic functions) the existence of a monogenic derivative does not directly follow. We show that if some relation between higher order differential forms are introduced then, (as in the complex case) the conjugated Cauchy-Riemann operator again gives the monogenic derivative of a monogenic function in ?.
36#
發(fā)表于 2025-3-27 19:02:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:49 | 只看該作者
38#
發(fā)表于 2025-3-28 03:12:14 | 只看該作者
The M?bius Transformation, Green Function and the Degenerate Elliptic Equation the compactification,?. U ∞, of ?.. With the aid of Green function we solve the Dirichlet problem for the non-homogeneous Laplace-Beltrami equation. Then we show that for the Laplace-Beltrami equation (which is a degenerate elliptic type) there exists twice continuously differentiable solutions on
39#
發(fā)表于 2025-3-28 09:15:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:30:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清新县| 韶关市| 南城县| 洪雅县| 南通市| 丰宁| 荔波县| 盐边县| 镇平县| 沙洋县| 吉安市| 林芝县| 潜江市| 四川省| 大邑县| 墨竹工卡县| 常山县| 射阳县| 资溪县| 天气| 隆昌县| 宿州市| 屯昌县| 虎林市| 珠海市| 嵊泗县| 通辽市| 清新县| 湛江市| 五华县| 清新县| 昭平县| 汉源县| 南靖县| 浙江省| 沁水县| 新平| 靖宇县| 永康市| 蛟河市| 门头沟区|