找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 2: Clifford A John Ryan,Wolfgang Spr??ig Book 2000 Springer Scienc

[復(fù)制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:53:02 | 只看該作者
32#
發(fā)表于 2025-3-27 04:04:01 | 只看該作者
33#
發(fā)表于 2025-3-27 05:42:30 | 只看該作者
34#
發(fā)表于 2025-3-27 09:53:40 | 只看該作者
The Geometry of Generalized Dirac Operators and the Standard Model of Particle Physicsodel of particle physics in a unified way. In this frame the fundamental objects are generalized Dirac operators, and the geometrical setup is that of a Clifford module bundle over an even dimensional closed Riemannian manifold.
35#
發(fā)表于 2025-3-27 14:20:20 | 只看該作者
Hypercomplex Derivability — The Characterization of Monogenic Functions in ?, by Their Derivativeonogenic functions) the existence of a monogenic derivative does not directly follow. We show that if some relation between higher order differential forms are introduced then, (as in the complex case) the conjugated Cauchy-Riemann operator again gives the monogenic derivative of a monogenic function in ?.
36#
發(fā)表于 2025-3-27 19:02:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:52:49 | 只看該作者
38#
發(fā)表于 2025-3-28 03:12:14 | 只看該作者
The M?bius Transformation, Green Function and the Degenerate Elliptic Equation the compactification,?. U ∞, of ?.. With the aid of Green function we solve the Dirichlet problem for the non-homogeneous Laplace-Beltrami equation. Then we show that for the Laplace-Beltrami equation (which is a degenerate elliptic type) there exists twice continuously differentiable solutions on
39#
發(fā)表于 2025-3-28 09:15:20 | 只看該作者
40#
發(fā)表于 2025-3-28 13:30:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭通市| 天镇县| 山丹县| 建始县| 遂宁市| 攀枝花市| 南召县| 东城区| 南乐县| 固原市| 农安县| 当阳市| 堆龙德庆县| 朝阳区| 嫩江县| 西峡县| 延津县| 江陵县| 永丰县| 乐陵市| 惠来县| 平顶山市| 桦南县| 合江县| 广东省| 西丰县| 张北县| 柞水县| 九寨沟县| 五河县| 普洱| 六枝特区| 九龙县| 惠州市| 任丘市| 宁陵县| 黄陵县| 江山市| 乌什县| 牡丹江市| 菏泽市|