找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 2: Clifford A John Ryan,Wolfgang Spr??ig Book 2000 Springer Scienc

[復(fù)制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 10:29:06 | 只看該作者
The Structure of Monogenic FunctionsWe study the structure of monogenic functions using symmetries of the Dirac operator.
12#
發(fā)表于 2025-3-23 17:01:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:03 | 只看該作者
14#
發(fā)表于 2025-3-23 23:33:40 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:57 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:38 | 只看該作者
The Democratic Republic of the Congoes with metrics of arbitrary signatures. In particular, we derive expressions for those isometry operators which correspond to coordinate parallelograms that can be continuously shrunk to zero. The isometry operators are expressed in terms of infinite series which are defined by two recursion relati
18#
發(fā)表于 2025-3-24 17:03:05 | 只看該作者
Palgrave Critical University Studiesodel of particle physics in a unified way. In this frame the fundamental objects are generalized Dirac operators, and the geometrical setup is that of a Clifford module bundle over an even dimensional closed Riemannian manifold.
19#
發(fā)表于 2025-3-24 20:16:10 | 只看該作者
Samantha Champagnie,Janis L. Gogan definition of the Schwarzian is not clear. In this paper, we introduce a “natural” generalization of the Schwarzian using the Clifford algebra and show that it vanishes exactly for M?bius transformations. The situation is simplest for non-singular transformations of the Euclidean space although the
20#
發(fā)表于 2025-3-25 02:38:49 | 只看該作者
Fred Niederman,Elizabeth White Bakerector functions . = .( .., .) + .( .) .( .., .), where . and . are real-valued. The equation . splits into two parts. One of them depends only on x.,.. This leads to a system of partial differential equations which coincides with the system defining hypermonogenic functions. These functions arise fo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓台县| 楚雄市| 五原县| 漳浦县| 柳江县| 鲁山县| 玉溪市| 昭觉县| 玉林市| 绥中县| 新沂市| 大丰市| 伊金霍洛旗| 高密市| 泗洪县| 昌图县| 镇沅| 台中市| 府谷县| 大姚县| 常州市| 万州区| 辽宁省| 大丰市| 东源县| 桐城市| 泸溪县| 高尔夫| 来安县| 宜宾县| 新闻| 浙江省| 南宁市| 冕宁县| 临城县| 长治市| 丹阳市| 张家界市| 东丰县| 安吉县| 阳高县|