找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification of Higher Dimensional Algebraic Varieties; Christopher D. Hacon,Sándor Kovács Textbook 2010 Birkh?user Basel 2010 Dimension

[復(fù)制鏈接]
樓主: hormone-therapy
21#
發(fā)表于 2025-3-25 04:33:42 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:15 | 只看該作者
Nyamjav Sumberzul,Shagdarsuren OyunbilegIn this Chapter we will recall the definition and the main properties of multiplier ideal sheaves. The standard reference for multiplier ideal sheaves is [ Laz04b]. In what follows we will focus on a generalization of this notion known as adjoint ideals.
23#
發(fā)表于 2025-3-25 14:18:05 | 只看該作者
https://doi.org/10.1057/9781137291646 . - 1. . π: . → . Δ . ?-. = [Δ] . ?-. ≥ 0, (.,Δ) ., (., Ω +A. . Ω = (A + B)|., . .(. + Δ) . > 0 .
24#
發(fā)表于 2025-3-25 19:16:40 | 只看該作者
Researching Intercultural LearningIn this chapter we will prove that Theorems 5.56, 5.57, 5.58, 5.59, 5.60 in dimensions ≤ . - 1 and Theorems 5.56, 5.57 in dimensions ≤ . imply Theorem 5.58 in dimension .. We begin by recalling the following results from [Nak04].
25#
發(fā)表于 2025-3-25 21:00:42 | 只看該作者
Researching Intercultural Learning Theorems 5.59, 5.60 in dimensions ≤ n - 1 and Theorems 5.56, 5.57, 5.58 in dimensions ≤ n imply Theorem 5.59 (1) in dimension n.
26#
發(fā)表于 2025-3-26 00:48:37 | 只看該作者
27#
發(fā)表于 2025-3-26 07:07:04 | 只看該作者
International Pedagogical StructuresThroughout this section we will use the notation for the pull-back of a sheaf introduced in (2.15).
28#
發(fā)表于 2025-3-26 09:30:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:54:39 | 只看該作者
Conceptualisations of Intimacy,In this chapter we will recall a few results regarding singularities that occur on stable varieties, that is, singularities of the objects that appear on the boundary of the moduli spaces we discussed in the previous chapter.
30#
發(fā)表于 2025-3-26 17:07:04 | 只看該作者
SingularitiesFor an excellent introduction to this topic the reader is urged to take a thorough look at Miles Reid’s . [Rei87]. Here we will only briefly touch on the subject.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇义县| 成安县| 临武县| 安达市| 镇雄县| 怀宁县| 西昌市| 巴南区| 齐河县| 石渠县| 蒙自县| 天峨县| 惠来县| 通江县| 郁南县| 孙吴县| 广南县| 哈尔滨市| 玉环县| 成安县| 九寨沟县| 喀喇沁旗| 岗巴县| 卢龙县| 新津县| 奉新县| 禄劝| 顺义区| 漯河市| 祁连县| 龙南县| 保靖县| 澎湖县| 邵阳市| 白朗县| 刚察县| 北京市| 濉溪县| 桦南县| 宁晋县| 沙河市|