找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classification of Higher Dimensional Algebraic Varieties; Christopher D. Hacon,Sándor Kovács Textbook 2010 Birkh?user Basel 2010 Dimension

[復(fù)制鏈接]
查看: 17899|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:47:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classification of Higher Dimensional Algebraic Varieties
編輯Christopher D. Hacon,Sándor Kovács
視頻videohttp://file.papertrans.cn/228/227214/227214.mp4
概述Introductory text to an advanced topic of active research.Includes supplementary material:
叢書名稱Oberwolfach Seminars
圖書封面Titlebook: Classification of Higher Dimensional Algebraic Varieties;  Christopher D. Hacon,Sándor Kovács Textbook 2010 Birkh?user Basel 2010 Dimension
描述This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on the existence of minimal models for varieties of log general type and of the finite generation of the canonical ring. The second part is an introduction to the theory of moduli spaces. It includes topics such as representing and moduli functors, Hilbert schemes, the boundedness, local closedness and separatedness of moduli spaces and the boundedness for varieties of general type.The book is aimed at advanced graduate students and researchers in algebraic geometry.
出版日期Textbook 2010
關(guān)鍵詞Dimension; Divisor; Grad; algebraic geometry; algebraic varieties; minimal model; moduli space; projective
版次1
doihttps://doi.org/10.1007/978-3-0346-0290-7
isbn_softcover978-3-0346-0289-1
isbn_ebook978-3-0346-0290-7Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Classification of Higher Dimensional Algebraic Varieties影響因子(影響力)




書目名稱Classification of Higher Dimensional Algebraic Varieties影響因子(影響力)學(xué)科排名




書目名稱Classification of Higher Dimensional Algebraic Varieties網(wǎng)絡(luò)公開度




書目名稱Classification of Higher Dimensional Algebraic Varieties網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classification of Higher Dimensional Algebraic Varieties被引頻次




書目名稱Classification of Higher Dimensional Algebraic Varieties被引頻次學(xué)科排名




書目名稱Classification of Higher Dimensional Algebraic Varieties年度引用




書目名稱Classification of Higher Dimensional Algebraic Varieties年度引用學(xué)科排名




書目名稱Classification of Higher Dimensional Algebraic Varieties讀者反饋




書目名稱Classification of Higher Dimensional Algebraic Varieties讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:22 | 只看該作者
Preliminariesadopt similar conventions for ?, ?, ? and ? and ≥ 0, ≤ 0, > 0 and < 0. We will write . ? 0 for any sufficiently big integerm . ∈ ? and 0 < ε ? 1 for any sufficiently small positive real number ε ∈ ?.. The . of . ∈ ? is ?.? = max{. ∈ ?|. ≤ .}. The . of . ∈ ? is ?.? = - ?-.? and the . of . ∈ if {.} =
板凳
發(fā)表于 2025-3-22 01:16:02 | 只看該作者
地板
發(fā)表于 2025-3-22 06:57:25 | 只看該作者
Log terminal models(X; Δ + C = S + A +B +C) be a ?-factorial dlt pair with S = ?Δ?, such that K. + Δ +C is nef over U and .+A/U) contains no non-klt centers of (X,Δ + C). Let Φ.: X. → X. be a sequence of flips and divisorial contractions over U for the (K. + Δ)-mmp over U with scaling of C.
5#
發(fā)表于 2025-3-22 11:04:58 | 只看該作者
6#
發(fā)表于 2025-3-22 15:23:09 | 只看該作者
Subvarieties of moduli spacese of these spaces. Moduli theory strives to understand how algebraic varieties deform and degenerate. When studying moduli spaces we are interested in the geometry of the moduli space that reflects the behavior of the families parameterized by the given moduli space. In other words, we are intereste
7#
發(fā)表于 2025-3-22 17:04:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:13:46 | 只看該作者
Researching Higher Education in Asiaadopt similar conventions for ?, ?, ? and ? and ≥ 0, ≤ 0, > 0 and < 0. We will write . ? 0 for any sufficiently big integerm . ∈ ? and 0 < ε ? 1 for any sufficiently small positive real number ε ∈ ?.. The . of . ∈ ? is ?.? = max{. ∈ ?|. ≤ .}. The . of . ∈ ? is ?.? = - ?-.? and the . of . ∈ if {.} = . - ?.?.
9#
發(fā)表于 2025-3-23 02:43:28 | 只看該作者
10#
發(fā)表于 2025-3-23 07:51:05 | 只看該作者
Researching Intercultural Learning(X; Δ + C = S + A +B +C) be a ?-factorial dlt pair with S = ?Δ?, such that K. + Δ +C is nef over U and .+A/U) contains no non-klt centers of (X,Δ + C). Let Φ.: X. → X. be a sequence of flips and divisorial contractions over U for the (K. + Δ)-mmp over U with scaling of C.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
什邡市| 商城县| 湘乡市| 德昌县| 达拉特旗| 白玉县| 宜君县| 大姚县| 嘉义县| 永新县| 新疆| 海门市| 咸阳市| 渑池县| 承德县| 苏尼特右旗| 辉南县| 阿合奇县| 定陶县| 平果县| 德安县| 芒康县| 兴和县| 分宜县| 宜都市| 拉萨市| 明星| 慈溪市| 武城县| 嘉义市| 巴里| 涪陵区| 长武县| 新津县| 雅江县| 鄂温| 禹州市| 罗山县| 浦城县| 辽宁省| 临澧县|