找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 10:53:16 | 只看該作者
Max Bramer,Miltos Petridis,Adrian HopgoodHere we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
12#
發(fā)表于 2025-3-23 15:19:27 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:23 | 只看該作者
Dalila Boughaci,Louiza Slaouti,Kahina AchourWe now want to compute the kernel .(., .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
14#
發(fā)表于 2025-3-24 01:02:39 | 只看該作者
https://doi.org/10.1007/978-1-4471-2318-7Until now we have always used a trick to calculate the path integral in
15#
發(fā)表于 2025-3-24 03:59:28 | 只看該作者
Veronica E. Arriola-Rios,Jeremy WyattHere is another important example of a path integral calculation, namely the time-dependent oscillator whose Lagrangian is given by
16#
發(fā)表于 2025-3-24 09:08:37 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:32 | 只看該作者
Application of the Action Principles,We begin this chapter by deriving a few laws of nonconservation in mechanics. To this end we first consider the change of the action under rigid space translation δ. = δε. and δ.(.) = 0. Then the noninvariant part of the action, . is given by . and thus it immediately follows for the variation of . that . or
18#
發(fā)表于 2025-3-24 16:05:09 | 只看該作者
The Hamilton-Jacobi Equation,We already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2. coordinates (., .) to 2. constant values (., .), e.g., to the 2. initial values (., .) at time . = 0. Then the problem would be solved, . = .(., ., .), . = .(.,., .).
19#
發(fā)表于 2025-3-24 20:37:03 | 只看該作者
The Adiabatic Invariance of the Action Variables,We shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity .. Let gravitation be neglected, and the collisions with the walls be elastic. If . denotes the average force onto each wall, then we have
20#
發(fā)表于 2025-3-25 01:30:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封市| 健康| 桃园市| 石河子市| 慈利县| 微山县| 玛沁县| 怀仁县| 越西县| 玉门市| 玉溪市| 晋江市| 象山县| 金沙县| 龙川县| 大洼县| 佛坪县| 法库县| 石渠县| 柘荣县| 察哈| 龙游县| 大新县| 手游| 岳西县| 桃源县| 永年县| 万州区| 民和| 大安市| 通山县| 佛坪县| 将乐县| 焦作市| 惠州市| 钦州市| 宁乡县| 历史| 安陆市| 罗田县| 房山区|