找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
查看: 22254|回復(fù): 62
樓主
發(fā)表于 2025-3-21 17:40:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classical and Quantum Dynamics
副標(biāo)題from Classical Paths
編輯Walter Dittrich,Martin Reuter
視頻videohttp://file.papertrans.cn/228/227162/227162.mp4
圖書封面Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe
描述In the past 10 to 15 years, the quantum leap inunderstanding of nonlineardynamics has radically changedthe frame of reference of physicists contemplating suchsystems. This book treats classical and quantummechanicsusing an approach as introduced by nonlinearHamiltoniandynamics and path integral methods. It is written forgraduate students who want to become familiar with the moreadvancedcomputational strategies in classical and quantumdynamics. Therefore,worked examples comprise a large partof the text. While the first half ofthe book lays thegroundwork for a standard course, the second half, with itsdetailed treatment of the time-dependent oscillator,classical andquantum Chern-Simons mechanics, the Maslovanomaly and the Berry phase, willacquaint the reader withmodern topological methods that have not as yetfound theirway into the textbook literature.
出版日期Textbook 19921st edition
關(guān)鍵詞Pfadintegrale; Quantenmechanik; classical mechanics; dynamics; halbklassische Quantisierung; klassische M
版次1
doihttps://doi.org/10.1007/978-3-642-97921-7
isbn_ebook978-3-642-97921-7
copyrightSpringer-Verlag Berlin Heidelberg 1992
The information of publication is updating

書目名稱Classical and Quantum Dynamics影響因子(影響力)




書目名稱Classical and Quantum Dynamics影響因子(影響力)學(xué)科排名




書目名稱Classical and Quantum Dynamics網(wǎng)絡(luò)公開度




書目名稱Classical and Quantum Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classical and Quantum Dynamics被引頻次




書目名稱Classical and Quantum Dynamics被引頻次學(xué)科排名




書目名稱Classical and Quantum Dynamics年度引用




書目名稱Classical and Quantum Dynamics年度引用學(xué)科排名




書目名稱Classical and Quantum Dynamics讀者反饋




書目名稱Classical and Quantum Dynamics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:16 | 只看該作者
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ?, then Jacobi’s principle states:
板凳
發(fā)表于 2025-3-22 00:29:35 | 只看該作者
地板
發(fā)表于 2025-3-22 06:30:27 | 只看該作者
The KAM Theorem,ator .(θ., .) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
5#
發(fā)表于 2025-3-22 12:32:20 | 只看該作者
http://image.papertrans.cn/c/image/227162.jpg
6#
發(fā)表于 2025-3-22 15:06:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:57:48 | 只看該作者
A Classification-based Review RecommenderWe begin this chapter by deriving a few laws of nonconservation in mechanics. To this end we first consider the change of the action under rigid space translation δ. = δε. and δ.(.) = 0. Then the noninvariant part of the action, . is given by . and thus it immediately follows for the variation of . that . or
8#
發(fā)表于 2025-3-23 00:12:55 | 只看該作者
A kernel extension to handle missing dataWe already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2. coordinates (., .) to 2. constant values (., .), e.g., to the 2. initial values (., .) at time . = 0. Then the problem would be solved, . = .(., ., .), . = .(.,., .).
9#
發(fā)表于 2025-3-23 05:20:37 | 只看該作者
Max Bramer,Richard Ellis,Miltos PetridisWe shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity .. Let gravitation be neglected, and the collisions with the walls be elastic. If . denotes the average force onto each wall, then we have
10#
發(fā)表于 2025-3-23 06:54:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
壤塘县| 汶川县| 乌鲁木齐县| 晋江市| 抚顺县| 灵石县| 仪征市| 南投市| 漳州市| 轮台县| 凯里市| 诸暨市| 河南省| 左权县| 特克斯县| 蛟河市| 承德县| 基隆市| 偏关县| 文水县| 浪卡子县| 佛山市| 上思县| 湘潭市| 蒙阴县| 东台市| 台北市| 大田县| 东丽区| 六枝特区| 长沙市| 沁源县| 开平市| 民乐县| 宝清县| 新龙县| 眉山市| 花莲县| 双辽市| 抚松县| 义乌市|