找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Theory of Algebraic Numbers; Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a

[復(fù)制鏈接]
樓主: 租期
21#
發(fā)表于 2025-3-25 04:53:22 | 只看該作者
22#
發(fā)表于 2025-3-25 07:36:57 | 只看該作者
https://doi.org/10.1007/978-3-031-01750-6In this chapter we investigate the following question. Let . > 1 and let a be an integer relatively prime to .. When is the residue class ā a square in the multiplicative group P(.)? In other words, when does there exist an integer . such that .. ≡ a (mod .)?
23#
發(fā)表于 2025-3-25 12:56:26 | 只看該作者
24#
發(fā)表于 2025-3-25 19:27:20 | 只看該作者
25#
發(fā)表于 2025-3-25 21:35:45 | 只看該作者
26#
發(fā)表于 2025-3-26 01:28:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:00 | 只看該作者
Academic Assessment and InstrumentationIn this chapter we study the discriminant. A method of “Geometry of Numbers” is used to provide sharper estimates for the discriminant.
28#
發(fā)表于 2025-3-26 12:08:45 | 只看該作者
Academic Assessment and InstrumentationAs we have said, two elements of a domain are associated precisely when they generate the same ideal. Thus, by considering ideals, we ignore the units. However, it will become apparent that a number of arithmetic properties are intimately tied up with the units of the ring of integers . of the algebraic number field ..
29#
發(fā)表于 2025-3-26 13:20:22 | 只看該作者
https://doi.org/10.1007/978-1-4613-8345-1For the convenience of the reader, this chapter is devoted to the detailed presentation of algebraic results, which will be needed in the sequel.
30#
發(fā)表于 2025-3-26 19:42:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁明县| 藁城市| 开平市| 和静县| 临猗县| 潮州市| 广西| 漠河县| 习水县| 民县| 隆昌县| 延寿县| 江西省| 牙克石市| 成安县| 平利县| 南康市| 平舆县| 云梦县| 静宁县| 应用必备| 柳林县| 天柱县| 三亚市| 界首市| 温州市| 涿州市| 中方县| 乌海市| 万州区| 沙洋县| 故城县| 泗阳县| 壶关县| 乌兰县| 延寿县| 繁峙县| 城固县| 湘潭市| 类乌齐县| 江阴市|