找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Theory of Algebraic Numbers; Paulo Ribenboim Textbook 2001Latest edition Springer Science+Business Media New York 2001 algebra.a

[復(fù)制鏈接]
樓主: 租期
11#
發(fā)表于 2025-3-23 12:40:34 | 只看該作者
Candace S. Bos,Virginia Richardsonthis situation, . need not be a principal ideal domain and . need not be a free .-module. We shall introduce the relative trace and norm of fractional ideals of . and, in view of characterizing ramified prime ideals, we shall consider the relative discriminant and relative different.
12#
發(fā)表于 2025-3-23 14:41:09 | 只看該作者
Research Issues in Learning Disabilitiese a prime ideal of ., and let . be the decomposition of . into a product of prime ideals, with .. We shall study in more detail how this decomposition takes place. This has been done by Hilbert, assuming that .|. is a Galois extension.
13#
發(fā)表于 2025-3-23 20:07:02 | 只看該作者
https://doi.org/10.1007/978-0-387-21690-4algebra; algebraic geometry; automorphism; cryptography; diophantine equation; field; prime number; quadrat
14#
發(fā)表于 2025-3-24 01:08:22 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:46 | 只看該作者
Extension of Idealsrespectively, .), be the rings of algebraic integers of . (respectively, .). Let . be any nonzero fractional ideal of .. The aim of this study is to relate the decomposition of . into prime ideals of ., with the decomposition into prime ideals of ., of the fractional ideal of . generated by ..
16#
發(fā)表于 2025-3-24 10:00:14 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:00 | 只看該作者
The Decomposition of Prime Ideals in Galois Extensionse a prime ideal of ., and let . be the decomposition of . into a product of prime ideals, with .. We shall study in more detail how this decomposition takes place. This has been done by Hilbert, assuming that .|. is a Galois extension.
18#
發(fā)表于 2025-3-24 15:25:58 | 只看該作者
Universitexthttp://image.papertrans.cn/c/image/227139.jpg
19#
發(fā)表于 2025-3-24 21:21:42 | 只看該作者
Navigating Sensitive Topics with Children,Let A be a domain, that is, a commutative ring with unit element (different from 0), having no zero-divisors (except 0). Let . be its field of quotients.
20#
發(fā)表于 2025-3-25 02:54:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内黄县| 鄂伦春自治旗| 从化市| 绥宁县| 奉贤区| 凭祥市| 大丰市| 康定县| 黄浦区| 株洲市| 墨玉县| 桃源县| 荔浦县| 疏附县| 山阴县| 呼和浩特市| 永州市| 孟州市| 贺州市| 定陶县| 平度市| 寿光市| 拜泉县| 额尔古纳市| 丰镇市| 家居| 岐山县| 兴仁县| 河池市| 长汀县| 邢台县| 甘肃省| 连州市| 贵溪市| 白沙| 天等县| 图木舒克市| 吐鲁番市| 贵州省| 武义县| 福海县|