找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory; David H. Armitage,Stephen J. Gardiner Book 2001 Springer-Verlag London 2001 Analysis.Complex Analysis.Harmonic

[復(fù)制鏈接]
樓主: Daidzein
31#
發(fā)表于 2025-3-26 21:28:40 | 只看該作者
Subharmonic Functions,value property: . (.) = . (.) whenever .. Subharmonic functions correspond to one half of this definition — they are upper-finite, upper semicontinuous functionss which satisfy the mean value inequality . (.) ≤ . (.) whenever .. They are allowed to take the value ?∞ 00 so that we can include such fu
32#
發(fā)表于 2025-3-27 01:53:00 | 只看該作者
Polar Sets and Capacity, of Lebesgue measure zero. Indeed, polar sets are the negligible sets of potential theory and will be seen to play a role reminiscent of that played by sets of measure zero in integration. A useful result proved in Section 5.2 is that closed polar sets are removable singularities for lower-bounded s
33#
發(fā)表于 2025-3-27 06:53:55 | 只看該作者
The Dirichlet Problem,) → .(.) as . → . for each .. Such a function . is called the . on Ω with boundary function ., and the maximum principle guarantees the uniqueness of the solution if it exists. For example, if Ω is either a ball or a half-space and . ∈ .(δ.Ω), then the solution of the Dirichlet problem certainly exi
34#
發(fā)表于 2025-3-27 12:58:00 | 只看該作者
Boundary Limits,e harmonic function on . has finite non-tangential limits at σ-almost every boundary point (Fatou’s theorem). The notions of radial and non-tangential limits are clearly unsuitable for the study of boundary behaviour in general domains. To overcome this difficulty, we will develop the ideas of the p
35#
發(fā)表于 2025-3-27 17:31:38 | 只看該作者
Potential Performance Texts for , and ,ved, including the fact that they are “almost” superharmonic. Later, in Section 5.7, deeper properties will be proved via an important result known as the fundamental convergence theorem of potential theory. Before that, however, we will develop the notion of the capacity of a set, beginning with co
36#
發(fā)表于 2025-3-27 21:12:42 | 只看該作者
37#
發(fā)表于 2025-3-28 01:53:19 | 只看該作者
Polar Sets and Capacity,ved, including the fact that they are “almost” superharmonic. Later, in Section 5.7, deeper properties will be proved via an important result known as the fundamental convergence theorem of potential theory. Before that, however, we will develop the notion of the capacity of a set, beginning with co
38#
發(fā)表于 2025-3-28 05:10:43 | 只看該作者
39#
發(fā)表于 2025-3-28 08:47:29 | 只看該作者
40#
發(fā)表于 2025-3-28 13:19:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湘西| 长岛县| 连江县| 璧山县| 仁化县| 科技| 岱山县| 武夷山市| 义乌市| 黑山县| 张家口市| 琼中| 平南县| 海阳市| 丰宁| 民勤县| 宜宾市| 珲春市| 华阴市| 嘉禾县| 德保县| 沽源县| 盐源县| 金山区| 潼南县| 盐亭县| 南阳市| 团风县| 杭锦后旗| 双峰县| 扶余县| 洪江市| 浦江县| 邵武市| 疏勒县| 五台县| 四平市| 宁国市| 中牟县| 洞口县| 九龙县|