找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Potential Theory; David H. Armitage,Stephen J. Gardiner Book 2001 Springer-Verlag London 2001 Analysis.Complex Analysis.Harmonic

[復(fù)制鏈接]
樓主: Daidzein
11#
發(fā)表于 2025-3-23 12:19:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:25:08 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:39 | 只看該作者
Translators and Publishers: Friends or Foes?value property: . (.) = . (.) whenever .. Subharmonic functions correspond to one half of this definition — they are upper-finite, upper semicontinuous functionss which satisfy the mean value inequality . (.) ≤ . (.) whenever .. They are allowed to take the value ?∞ 00 so that we can include such fu
14#
發(fā)表于 2025-3-24 01:41:03 | 只看該作者
Potential Performance Texts for , and , of Lebesgue measure zero. Indeed, polar sets are the negligible sets of potential theory and will be seen to play a role reminiscent of that played by sets of measure zero in integration. A useful result proved in Section 5.2 is that closed polar sets are removable singularities for lower-bounded s
15#
發(fā)表于 2025-3-24 02:47:50 | 只看該作者
Artifacts: The Early Plays Reconsidered,) → .(.) as . → . for each .. Such a function . is called the . on Ω with boundary function ., and the maximum principle guarantees the uniqueness of the solution if it exists. For example, if Ω is either a ball or a half-space and . ∈ .(δ.Ω), then the solution of the Dirichlet problem certainly exi
16#
發(fā)表于 2025-3-24 10:01:46 | 只看該作者
Two Kinds of Clothing: , and ,,e harmonic function on . has finite non-tangential limits at σ-almost every boundary point (Fatou’s theorem). The notions of radial and non-tangential limits are clearly unsuitable for the study of boundary behaviour in general domains. To overcome this difficulty, we will develop the ideas of the p
17#
發(fā)表于 2025-3-24 13:47:31 | 只看該作者
https://doi.org/10.1007/978-1-4471-0233-5Analysis; Complex Analysis; Harmonic Functions; Poisson integral; Potential theory; Real Analysis; calculu
18#
發(fā)表于 2025-3-24 18:47:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:28 | 只看該作者
20#
發(fā)表于 2025-3-25 00:06:32 | 只看該作者
David H. Armitage,Stephen J. GardinerWritten by the world leaders in potential theory.Competitive titles are now out of print: an updated introductory text has been long awaited
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民县| 砀山县| 剑河县| 通山县| 金昌市| 仙游县| 昭平县| 浦城县| 常山县| 辛集市| 湘潭县| 金华市| 龙井市| 寻乌县| 浏阳市| 锡林郭勒盟| 龙岩市| 渝北区| 上饶市| 岳西县| 健康| 金沙县| 化州市| 鄂托克旗| 宁河县| 冀州市| 拉孜县| 沧州市| 雷波县| 长春市| 大竹县| 南涧| 璧山县| 库车县| 莆田市| 阳信县| 商水县| 青海省| 清涧县| 长治市| 新宁县|