找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Linear Operators; Israel Gohberg,Marinus A. Kaashoek,Seymour Goldber Book 1993 Birkh?user Verlag 1993 Mathematik.complex analys

[復(fù)制鏈接]
樓主: 到來
51#
發(fā)表于 2025-3-30 12:17:13 | 只看該作者
Block Shift Operatorsmplest infinite dimensional operators, and they may serve as building blocks for more complicated operators. In the first section block forward shifts are identified as pure isometries. In the second section it is shown that block backward shifts provide universal models for arbitrary operators. The
52#
發(fā)表于 2025-3-30 15:04:49 | 只看該作者
53#
發(fā)表于 2025-3-30 17:09:37 | 只看該作者
54#
發(fā)表于 2025-3-30 23:21:31 | 只看該作者
General Theoryur of the spectrum when the algebra is embedded isometrically into a larger Banach algebra. Also in this chapter we introduce a number of examples which will be used throughout this part to illustrate the general theory. Factorization of elements close to the identity is treated in the last section.
55#
發(fā)表于 2025-3-31 04:22:43 | 只看該作者
Commutative Banach Algebrashe results are illustrated by various examples. In particular, it is explained in detail how under the Gelfand transformation piecewise continuous functions become continuous. Special attention is paid to finitely generated commutative Banach algebras and to the Banach algebra generated by a compact
56#
發(fā)表于 2025-3-31 07:07:18 | 只看該作者
Banach Algebras Generated by Toeplitz Operatorstudied. These algebras are not commutative, but they contain the compact operators as a proper closed ideal and in the scalar case the corresponding quotient algebras turn out to be commutative. The Gelfand spectra and transforms of these quotient algebras are described and analyzed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭苏县| 泰顺县| 同心县| 临颍县| 祁门县| 麻栗坡县| 石屏县| 乐昌市| 余庆县| 铜川市| 张掖市| 米泉市| 浪卡子县| 荣昌县| 阳朔县| 原阳县| 九江县| 黄山市| 和田市| 崇左市| 宽甸| 乐都县| 伊宁市| 安福县| 永善县| 江山市| 泽普县| 伊川县| 舟曲县| 繁峙县| 固原市| 赞皇县| 隆回县| 宁南县| 临猗县| 沙田区| 尉犁县| 西盟| 隆林| 台东市| 田阳县|