找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Linear Operators; Israel Gohberg,Marinus A. Kaashoek,Seymour Goldber Book 1993 Birkh?user Verlag 1993 Mathematik.complex analys

[復(fù)制鏈接]
樓主: 到來
21#
發(fā)表于 2025-3-25 04:18:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:33 | 只看該作者
23#
發(fā)表于 2025-3-25 13:15:37 | 只看該作者
Toeplitz Operators Defined by Piecewise Continuous Matrix Functionss with a finite number of discontinuities. Sums and products of such operators are also considered. The chapter provides the necessary tools to develop the theory of Banach algebras generated by Toeplitz operators defined by piecewise continuous functions, which will be treated in Chapter XXXII.
24#
發(fā)表于 2025-3-25 17:05:38 | 只看該作者
Dilation Theoryrs. The minimal isometric and minimal unitary dilations of a given contraction are to a large extent unique, which implies that those operators are useful instruments for the analysis of contractions. In this chapter we also prove the commutant lifting theorem and present some of its applications to interpolation problems.
25#
發(fā)表于 2025-3-25 22:37:21 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:24:53 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:39 | 只看該作者
Michael G. Merideth,Michael K. Reiters with a finite number of discontinuities. Sums and products of such operators are also considered. The chapter provides the necessary tools to develop the theory of Banach algebras generated by Toeplitz operators defined by piecewise continuous functions, which will be treated in Chapter XXXII.
30#
發(fā)表于 2025-3-26 20:16:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
出国| 普格县| 石城县| 惠州市| 山阳县| 溆浦县| 宁化县| 望奎县| 丽江市| 项城市| 农安县| 文化| 洛宁县| 同江市| 通州区| 雷波县| 和顺县| 澄江县| 盐城市| 宽甸| 六枝特区| 信阳市| 页游| 栖霞市| 秀山| 临沭县| 永和县| 东乌| 肥东县| 金川县| 阳高县| 阿勒泰市| 蓬溪县| 万全县| 开江县| 汶川县| 茂名市| 鱼台县| 湖南省| 文登市| 通榆县|