找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Linear Operators; Israel Gohberg,Marinus A. Kaashoek,Seymour Goldber Book 1993 Birkh?user Verlag 1993 Mathematik.complex analys

[復(fù)制鏈接]
樓主: 到來
51#
發(fā)表于 2025-3-30 12:17:13 | 只看該作者
Block Shift Operatorsmplest infinite dimensional operators, and they may serve as building blocks for more complicated operators. In the first section block forward shifts are identified as pure isometries. In the second section it is shown that block backward shifts provide universal models for arbitrary operators. The
52#
發(fā)表于 2025-3-30 15:04:49 | 只看該作者
53#
發(fā)表于 2025-3-30 17:09:37 | 只看該作者
54#
發(fā)表于 2025-3-30 23:21:31 | 只看該作者
General Theoryur of the spectrum when the algebra is embedded isometrically into a larger Banach algebra. Also in this chapter we introduce a number of examples which will be used throughout this part to illustrate the general theory. Factorization of elements close to the identity is treated in the last section.
55#
發(fā)表于 2025-3-31 04:22:43 | 只看該作者
Commutative Banach Algebrashe results are illustrated by various examples. In particular, it is explained in detail how under the Gelfand transformation piecewise continuous functions become continuous. Special attention is paid to finitely generated commutative Banach algebras and to the Banach algebra generated by a compact
56#
發(fā)表于 2025-3-31 07:07:18 | 只看該作者
Banach Algebras Generated by Toeplitz Operatorstudied. These algebras are not commutative, but they contain the compact operators as a proper closed ideal and in the scalar case the corresponding quotient algebras turn out to be commutative. The Gelfand spectra and transforms of these quotient algebras are described and analyzed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新干县| 大安市| 潜山县| 万州区| 隆化县| 五大连池市| 湖北省| 文登市| 黄大仙区| 肃南| 内江市| 琼中| 石渠县| 霍林郭勒市| 大足县| 桐乡市| 林口县| 南京市| 仙居县| 自治县| 新泰市| 连平县| 万载县| 仙桃市| 彰化市| 闽侯县| 三原县| 孟津县| 醴陵市| 珠海市| 博野县| 泸州市| 河间市| 玛多县| 南陵县| 平定县| 绿春县| 惠安县| 四平市| 正镶白旗| 阳谷县|