找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Linear Operators; Israel Gohberg,Marinus A. Kaashoek,Seymour Goldber Book 1993 Birkh?user Verlag 1993 Mathematik.complex analys

[復制鏈接]
樓主: 到來
21#
發(fā)表于 2025-3-25 04:18:06 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:33 | 只看該作者
23#
發(fā)表于 2025-3-25 13:15:37 | 只看該作者
Toeplitz Operators Defined by Piecewise Continuous Matrix Functionss with a finite number of discontinuities. Sums and products of such operators are also considered. The chapter provides the necessary tools to develop the theory of Banach algebras generated by Toeplitz operators defined by piecewise continuous functions, which will be treated in Chapter XXXII.
24#
發(fā)表于 2025-3-25 17:05:38 | 只看該作者
Dilation Theoryrs. The minimal isometric and minimal unitary dilations of a given contraction are to a large extent unique, which implies that those operators are useful instruments for the analysis of contractions. In this chapter we also prove the commutant lifting theorem and present some of its applications to interpolation problems.
25#
發(fā)表于 2025-3-25 22:37:21 | 只看該作者
26#
發(fā)表于 2025-3-26 03:01:39 | 只看該作者
27#
發(fā)表于 2025-3-26 06:24:53 | 只看該作者
28#
發(fā)表于 2025-3-26 08:37:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:39 | 只看該作者
Michael G. Merideth,Michael K. Reiters with a finite number of discontinuities. Sums and products of such operators are also considered. The chapter provides the necessary tools to develop the theory of Banach algebras generated by Toeplitz operators defined by piecewise continuous functions, which will be treated in Chapter XXXII.
30#
發(fā)表于 2025-3-26 20:16:32 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 22:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兰考县| 黑山县| 抚顺县| 方城县| 克什克腾旗| 讷河市| 温泉县| 桓台县| 德钦县| 临武县| 新泰市| 荔波县| 鄂托克前旗| 古交市| 慈溪市| 苏尼特左旗| 望谟县| 荔波县| 海林市| 博湖县| 深圳市| 济源市| 姜堰市| 张家川| 阳山县| 牡丹江市| 镇安县| 彭阳县| 建水县| 兖州市| 聂荣县| 元江| 北安市| 宿松县| 九龙县| 宁化县| 达孜县| 镇康县| 玉屏| 鄯善县| 托克逊县|