找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Directed Graphs; J?rgen Bang-Jensen,Gregory Gutin Book 2018 Springer International Publishing AG, part of Springer Nature 2018

[復(fù)制鏈接]
樓主: counterfeit
31#
發(fā)表于 2025-3-26 22:16:36 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:52:26 | 只看該作者
34#
發(fā)表于 2025-3-27 11:59:02 | 只看該作者
Acyclic Digraphs,pplications. We consider some basic results on acyclic digraphs and introduce transitive digraphs, and the transitive closure and transitive reduction of a digraph. We discuss results on out- and in-branchings, the .-linkage problem, maximum dicuts, and the multicut problem. We present enumeration r
35#
發(fā)表于 2025-3-27 16:25:04 | 只看該作者
36#
發(fā)表于 2025-3-27 19:44:14 | 只看該作者
Planar Digraphs,crossings. The main goal of this chapter is to show, from multiple angles, how the planarity assumption imposes structure on digraphs and how such structure, in conjunction with topological arguments, can be used algorithmically.
37#
發(fā)表于 2025-3-28 01:27:34 | 只看該作者
38#
發(fā)表于 2025-3-28 05:06:46 | 只看該作者
Semicomplete Multipartite Digraphs,a complete multipartite graph by replacing every edge by an arc or a pair of opposite arcs. In other words, the vertex set of a semicomplete multipartite digraph can be partitioned into sets such that vertices within the same set are nonadjacent and vertices between different sets are adjacent. This
39#
發(fā)表于 2025-3-28 08:37:20 | 只看該作者
Quasi-Transitive Digraphs and Their Extensions,arcs of .. Quasi-transitive digraphs generalize both tournaments (and semicomplete digraphs) and transitive digraphs, and share some of the nice properties of these families. In particular, many problems that are .-complete for general digraphs become solvable in polynomial time when restricted to q
40#
發(fā)表于 2025-3-28 14:09:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梁平县| 六安市| 蒙城县| 万荣县| 屯门区| 河间市| 青河县| 永德县| 昌乐县| 内丘县| 华亭县| 文山县| 阿鲁科尔沁旗| 观塘区| 井研县| 双城市| 翼城县| 广河县| 沁阳市| 安福县| 昭通市| 太谷县| 习水县| 冀州市| 东兰县| 越西县| 宁城县| 竹溪县| 日喀则市| 潮州市| 甘洛县| 庄浪县| 三原县| 环江| 富裕县| 永康市| 重庆市| 金秀| 甘谷县| 侯马市| 凉城县|