找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Directed Graphs; J?rgen Bang-Jensen,Gregory Gutin Book 2018 Springer International Publishing AG, part of Springer Nature 2018

[復(fù)制鏈接]
樓主: counterfeit
21#
發(fā)表于 2025-3-25 04:40:52 | 只看該作者
22#
發(fā)表于 2025-3-25 08:42:39 | 只看該作者
23#
發(fā)表于 2025-3-25 13:36:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:34:19 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:22 | 只看該作者
26#
發(fā)表于 2025-3-26 02:33:18 | 只看該作者
Programmentscheidungen (Lerneinheit VII),emicomplete digraphs with a very rich structure. The class contains digraphs, such as directed cycles, that are very far from being semicomplete. Yet a large number of classical results for semicomplete digraphs still hold for locally semicomplete digraphs. Two examples are that every connected loca
27#
發(fā)表于 2025-3-26 04:36:45 | 只看該作者
Repetitorium zur Investitionsrechnunga complete multipartite graph by replacing every edge by an arc or a pair of opposite arcs. In other words, the vertex set of a semicomplete multipartite digraph can be partitioned into sets such that vertices within the same set are nonadjacent and vertices between different sets are adjacent. This
28#
發(fā)表于 2025-3-26 10:37:03 | 只看該作者
https://doi.org/10.1007/978-3-8349-6316-1arcs of .. Quasi-transitive digraphs generalize both tournaments (and semicomplete digraphs) and transitive digraphs, and share some of the nice properties of these families. In particular, many problems that are .-complete for general digraphs become solvable in polynomial time when restricted to q
29#
發(fā)表于 2025-3-26 15:56:50 | 只看該作者
https://doi.org/10.1007/978-3-8349-6316-1on the minor relation and they have also found many algorithmic applications. Starting in the late 1990s, several ideas for generalizing this theory to digraphs have appeared. Broadly, for the purpose of this chapter, we distinguish these approaches into three categories: ., . and .. The tree-width
30#
發(fā)表于 2025-3-26 17:50:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
星子县| 贡嘎县| 樟树市| 德阳市| 吴川市| 库车县| 南陵县| 桦甸市| 瑞安市| 太原市| 南溪县| 中江县| 伊宁县| 哈密市| 乐安县| 荃湾区| 宣恩县| 阿图什市| 临夏县| 汨罗市| 凤山市| 遂宁市| 黄山市| 改则县| 绥棱县| 吉木乃县| 尼玛县| 洮南市| 佛山市| 宝鸡市| 泽普县| 观塘区| 偃师市| 余姚市| 木里| 浮山县| 兴安盟| 工布江达县| 章丘市| 武定县| 兰溪市|