找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Directed Graphs; J?rgen Bang-Jensen,Gregory Gutin Book 2018 Springer International Publishing AG, part of Springer Nature 2018

[復(fù)制鏈接]
樓主: counterfeit
21#
發(fā)表于 2025-3-25 04:40:52 | 只看該作者
22#
發(fā)表于 2025-3-25 08:42:39 | 只看該作者
23#
發(fā)表于 2025-3-25 13:36:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:34:19 | 只看該作者
25#
發(fā)表于 2025-3-25 22:14:22 | 只看該作者
26#
發(fā)表于 2025-3-26 02:33:18 | 只看該作者
Programmentscheidungen (Lerneinheit VII),emicomplete digraphs with a very rich structure. The class contains digraphs, such as directed cycles, that are very far from being semicomplete. Yet a large number of classical results for semicomplete digraphs still hold for locally semicomplete digraphs. Two examples are that every connected loca
27#
發(fā)表于 2025-3-26 04:36:45 | 只看該作者
Repetitorium zur Investitionsrechnunga complete multipartite graph by replacing every edge by an arc or a pair of opposite arcs. In other words, the vertex set of a semicomplete multipartite digraph can be partitioned into sets such that vertices within the same set are nonadjacent and vertices between different sets are adjacent. This
28#
發(fā)表于 2025-3-26 10:37:03 | 只看該作者
https://doi.org/10.1007/978-3-8349-6316-1arcs of .. Quasi-transitive digraphs generalize both tournaments (and semicomplete digraphs) and transitive digraphs, and share some of the nice properties of these families. In particular, many problems that are .-complete for general digraphs become solvable in polynomial time when restricted to q
29#
發(fā)表于 2025-3-26 15:56:50 | 只看該作者
https://doi.org/10.1007/978-3-8349-6316-1on the minor relation and they have also found many algorithmic applications. Starting in the late 1990s, several ideas for generalizing this theory to digraphs have appeared. Broadly, for the purpose of this chapter, we distinguish these approaches into three categories: ., . and .. The tree-width
30#
發(fā)表于 2025-3-26 17:50:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荆州市| 永泰县| 江都市| 渭南市| 高尔夫| 博兴县| 宜宾县| 灵宝市| 东乌珠穆沁旗| 固安县| 曲沃县| 平凉市| 苗栗市| 白沙| 广汉市| 莒南县| 天峨县| 崇仁县| 肇庆市| 徐汇区| 麟游县| 宜良县| 即墨市| 荥阳市| 顺义区| 新田县| 浦城县| 澄城县| 故城县| 文登市| 涿鹿县| 襄樊市| 峨边| 宝清县| 武冈市| 铁岭县| 英山县| 济宁市| 镇康县| 公主岭市| 广丰县|