找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Groups of Number Fields and Related Topics; Kalyan Chakraborty,Azizul Hoque,Prem Prakash Pande Book 2020 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: Suture
41#
發(fā)表于 2025-3-28 17:25:50 | 只看該作者
42#
發(fā)表于 2025-3-28 19:35:59 | 只看該作者
43#
發(fā)表于 2025-3-29 00:41:01 | 只看該作者
44#
發(fā)表于 2025-3-29 05:59:25 | 只看該作者
45#
發(fā)表于 2025-3-29 08:08:11 | 只看該作者
Thue Diophantine Equations, Allahabad (India), for the International Conference on Class Groups of Number Fields and Related Topics (ICCGNFRT-2017) based on notes by Kristyna Zemková. Some more information is added, including references, especially to joint works with Claude Levesque.
46#
發(fā)表于 2025-3-29 14:27:40 | 只看該作者
47#
發(fā)表于 2025-3-29 18:25:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:47:11 | 只看該作者
Cyclotomic Numbers and Jacobi Sums: A Survey,umber of interesting results. This survey aims at reviewing results concerning the Diophantine systems for finding the cyclotomic numbers and coefficients of Jacobi sums and to indicate the current status of the problem.
49#
發(fā)表于 2025-3-30 00:07:21 | 只看該作者
,On Lebesgue–Ramanujan–Nagell Type Equations, the so-called Lebesgue–Ramanujan–Nagell type equation, .where . and . are fixed positive integers, and one is looking for its solutions in positive integers. This is a survey article aimed at reviewing results concerning solvability of this equation in positive integers .,?.,?. and . for ..
50#
發(fā)表于 2025-3-30 05:54:07 | 只看該作者
,Partial Dedekind Zeta Values and Class Numbers of R–D Type Real Quadratic Fields,ct of attention for many years and there exist a large number of interesting results. This is a survey aimed at reviewing some results concerning the criteria for the class number of certain Richaud–Degert type real quadratic number fields to be at most 3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浙江省| 怀集县| 商城县| 邳州市| 五原县| 绥滨县| 嫩江县| 江北区| 孝感市| 峨眉山市| 南投县| 来宾市| 临潭县| 尚义县| 乡宁县| 介休市| 巴彦淖尔市| 嘉祥县| 区。| 遵义市| 洛宁县| 日喀则市| 富源县| 韩城市| 德清县| 宁远县| 叙永县| 东阳市| 宁夏| 三亚市| 万州区| 那曲县| 陇川县| 达尔| 手游| 迁安市| 增城市| 东莞市| 贵港市| 卓尼县| 师宗县|