找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Groups of Number Fields and Related Topics; Kalyan Chakraborty,Azizul Hoque,Prem Prakash Pande Book 2020 The Editor(s) (if applicabl

[復(fù)制鏈接]
查看: 33991|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:23:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Class Groups of Number Fields and Related Topics
編輯Kalyan Chakraborty,Azizul Hoque,Prem Prakash Pande
視頻videohttp://file.papertrans.cn/227/226992/226992.mp4
概述Presents geometrical and classical techniques to study the class groups of number fields.Features a chapter on Kummer–Vandiver conjecture.Explores various techniques to work toward Gauss class number
圖書封面Titlebook: Class Groups of Number Fields and Related Topics;  Kalyan Chakraborty,Azizul Hoque,Prem Prakash Pande Book 2020 The Editor(s) (if applicabl
描述.This book gathers original research papers and survey articles presented at the “International Conference on Class Groups of Number Fields and Related Topics,” held at Harish-Chandra Research Institute, Allahabad, India, on September 4–7, 2017. It discusses the fundamental research problems that arise in the study of class groups of number fields and introduces new techniques and tools to study these problems. Topics in this book include class groups and class numbers of number fields, units, the Kummer–Vandiver conjecture, class number one problem, Diophantine equations, Thue equations, continued fractions, Euclidean number fields, heights, rational torsion points on elliptic curves, cyclotomic numbers, Jacobi sums, and Dedekind zeta values..This book is a valuable resource for undergraduate and graduate students of mathematics as well as researchers interested in class groups of number fields and their connections to other branches of mathematics. New researchersto the field will also benefit immensely from the diverse problems discussed. All the contributing authors are leading academicians, scientists, researchers, and scholars..
出版日期Book 2020
關(guān)鍵詞Class Groups of Number Fields; Ranks of Class Groups; Class Numbers of Number Fields; Elliptic Curves; D
版次1
doihttps://doi.org/10.1007/978-981-15-1514-9
isbn_softcover978-981-15-1516-3
isbn_ebook978-981-15-1514-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Class Groups of Number Fields and Related Topics影響因子(影響力)




書目名稱Class Groups of Number Fields and Related Topics影響因子(影響力)學(xué)科排名




書目名稱Class Groups of Number Fields and Related Topics網(wǎng)絡(luò)公開度




書目名稱Class Groups of Number Fields and Related Topics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Class Groups of Number Fields and Related Topics被引頻次




書目名稱Class Groups of Number Fields and Related Topics被引頻次學(xué)科排名




書目名稱Class Groups of Number Fields and Related Topics年度引用




書目名稱Class Groups of Number Fields and Related Topics年度引用學(xué)科排名




書目名稱Class Groups of Number Fields and Related Topics讀者反饋




書目名稱Class Groups of Number Fields and Related Topics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:49:31 | 只看該作者
地板
發(fā)表于 2025-3-22 07:13:01 | 只看該作者
Thue Diophantine Equations, Allahabad (India), for the International Conference on Class Groups of Number Fields and Related Topics (ICCGNFRT-2017) based on notes by Kristyna Zemková. Some more information is added, including references, especially to joint works with Claude Levesque.
5#
發(fā)表于 2025-3-22 11:45:27 | 只看該作者
Divisibility of Class Number of a Real Cubic or Quadratic Field and Its Fundamental Unit,bic field and its class number. We show that 3-divisibility of the class number is related to certain congruences satisfied by the fundamental unit. Then we prove certain congruences for the fundamental unit of a real quadratic field of odd class number which are stronger than the ones in [.] and in
6#
發(fā)表于 2025-3-22 15:26:27 | 只看該作者
On Class Number Divisibility of Number Fields and Points on Elliptic Curves,tient of the group of all fractional ideals of . by the subgroups of principal fractional ideals. It is well known from class field theory that the ideal class group is also the Galois group of the maximal unramified abelian extension of ..
7#
發(fā)表于 2025-3-22 19:57:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:45 | 只看該作者
,On Lebesgue–Ramanujan–Nagell Type Equations, the so-called Lebesgue–Ramanujan–Nagell type equation, .where . and . are fixed positive integers, and one is looking for its solutions in positive integers. This is a survey article aimed at reviewing results concerning solvability of this equation in positive integers .,?.,?. and . for ..
9#
發(fā)表于 2025-3-23 01:35:15 | 只看該作者
10#
發(fā)表于 2025-3-23 07:10:19 | 只看該作者
Summary, Conclusion and Recommendationstt 19:1–14, 2012) and Bilu and Gillibert (Israel J Math, in press) on the construction of large class groups of number fields by specialization of finite covers of curves. Then we give examples of applications of these techniques.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴隆县| 周口市| 呈贡县| 肃北| 罗田县| 赤峰市| 金门县| 兰考县| 永登县| 百色市| 平阴县| 兴义市| 油尖旺区| 开远市| 万年县| 屯留县| 来凤县| 永年县| 靖西县| 峨眉山市| 喀喇沁旗| 龙陵县| 延安市| 临漳县| 顺昌县| 曲靖市| 许昌县| 枣庄市| 林芝县| 镇雄县| 鹤峰县| 南阳市| 讷河市| 临清市| 柘城县| 漾濞| 吉木萨尔县| 德昌县| 洱源县| 龙泉市| 连江县|