找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Class Groups of Number Fields and Related Topics; Kalyan Chakraborty,Azizul Hoque,Prem Prakash Pande Book 2020 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: Suture
31#
發(fā)表于 2025-3-27 00:34:01 | 只看該作者
,Distribution of Residues Modulo , Using the Dirichlet’s Class Number Formula,Let . be an odd prime number. In this article, we study the number of quadratic residues and non-residues modulo . which are multiples of 2 or 3 or 4 and lying in the interval ., by applying the Dirichlet’s class number formula for the imaginary quadratic field ..
32#
發(fā)表于 2025-3-27 01:14:17 | 只看該作者
33#
發(fā)表于 2025-3-27 05:35:10 | 只看該作者
A Pair of Quadratic Fields with Class Number Divisible by 3,Let . be an odd prime and . an integer. In this paper, we prove that the class numbers of . and . are divisible by 3. Using Siegel’s theorem, we show that there are infinitely many such pairs of quadratic fields with class number divisible by 3.
34#
發(fā)表于 2025-3-27 10:59:03 | 只看該作者
On the Continued Fraction Expansions of , and , for Primes ,The oddness of the length of the period of the continued fraction expansion of the square root of an odd prime integer equal to 3 modulo 4 is well known. We determine its value modulo 4. We also give a similar result for the square root of twice an odd prime integer equal to 3 modulo 4.
35#
發(fā)表于 2025-3-27 15:24:14 | 只看該作者
Summary, Conclusion and Recommendationstt 19:1–14, 2012) and Bilu and Gillibert (Israel J Math, in press) on the construction of large class groups of number fields by specialization of finite covers of curves. Then we give examples of applications of these techniques.
36#
發(fā)表于 2025-3-27 21:48:55 | 只看該作者
Repatriation to France and Germany Allahabad (India), for the International Conference on Class Groups of Number Fields and Related Topics (ICCGNFRT-2017) based on notes by Kristyna Zemková. Some more information is added, including references, especially to joint works with Claude Levesque.
37#
發(fā)表于 2025-3-28 01:39:50 | 只看該作者
38#
發(fā)表于 2025-3-28 05:30:56 | 只看該作者
Hygiene in der Repatriierungsmedizin,tient of the group of all fractional ideals of . by the subgroups of principal fractional ideals. It is well known from class field theory that the ideal class group is also the Galois group of the maximal unramified abelian extension of ..
39#
發(fā)表于 2025-3-28 08:21:46 | 只看該作者
https://doi.org/10.1007/978-3-658-39267-3umber of interesting results. This survey aims at reviewing results concerning the Diophantine systems for finding the cyclotomic numbers and coefficients of Jacobi sums and to indicate the current status of the problem.
40#
發(fā)表于 2025-3-28 11:14:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 长宁县| 华阴市| 南木林县| 靖西县| 阳江市| 古蔺县| 湖南省| 枣强县| 朔州市| 崇信县| 靖西县| 布尔津县| 平武县| 江永县| 祥云县| 博兴县| 屏山县| 奇台县| 鞍山市| 九龙坡区| 沁水县| 河津市| 衡山县| 栖霞市| 满城县| 嘉定区| 申扎县| 额敏县| 河津市| 时尚| 准格尔旗| 叙永县| 泗水县| 奉新县| 中方县| 阿鲁科尔沁旗| 福建省| 平远县| 郓城县| 巴林右旗|