找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 16th China National Maosong Sun,Xiao

[復(fù)制鏈接]
樓主: supplementary
31#
發(fā)表于 2025-3-26 23:30:23 | 只看該作者
32#
發(fā)表于 2025-3-27 04:59:08 | 只看該作者
Improving Event Detection via Information Sharing Among Related Event Typesoblem, we propose a novel approach that allows for information sharing among related event types. Specifically, we employ a fully connected three-layer artificial neural network as our basic model and propose a type-group regularization term to achieve the goal of information sharing. We conduct exp
33#
發(fā)表于 2025-3-27 06:27:38 | 只看該作者
Joint Extraction of Multiple Relations and Entities by Using a Hybrid Neural Networkosed model uses a hybrid neural network to automatically learn sentence features and does not rely on any Natural Language Processing (NLP) tools, such as dependency parser. Our model is further capable of modeling multiple relations and their corresponding entity pairs simultaneously. Experiments o
34#
發(fā)表于 2025-3-27 11:50:00 | 只看該作者
A Fast and Effective Framework for Lifelong Topic Model with Self-learning Knowledgemodels. Moreover, some researchers propose lifelong topic models (LTM) to mine prior knowledge from topics generated from multi-domain corpus without human intervene. LTM incorporates the learned knowledge from multi-domain corpus into topic models by introducing the Generalized Polya Urn (GPU) mode
35#
發(fā)表于 2025-3-27 17:19:12 | 只看該作者
36#
發(fā)表于 2025-3-27 18:38:28 | 只看該作者
XLink: An Unsupervised Bilingual Entity Linking Systemable attention and several online entity linking systems have been published. In this paper, we build an online bilingual entity linking system XLink, which is based on . and .. XLink conducts two steps to link the mentions in the input document to entities in knowledge base, namely mention parsing
37#
發(fā)表于 2025-3-28 01:36:18 | 只看該作者
38#
發(fā)表于 2025-3-28 03:39:33 | 只看該作者
Willi J?ger,Rolf Rannacher,Jürgen Warnatzs can guarantee a higher precision rate, which heightens even more after dependency relations are added as linguistic rules for filtering, having achieved 85.11%. This method also achieved a higher precision rate rather than only resorting to syntactic dependency analysis as a collocation extraction method.
39#
發(fā)表于 2025-3-28 10:19:23 | 只看該作者
40#
發(fā)表于 2025-3-28 12:09:10 | 只看該作者
A. Hanf,H. -R. Volpp,J. Wolfrumasing on the finding, we propose a pseudo context skip-gram model, which makes use of context words of semantic nearest neighbors of target words. Experiment results show our model achieves significant performance improvements in both word similarity and analogy tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦山县| 靖远县| 东台市| 苍梧县| 义马市| 潞西市| 牡丹江市| 公主岭市| 安国市| 岳阳市| 固阳县| 巴南区| 微博| 靖宇县| 辰溪县| 略阳县| 探索| 南陵县| 呼玛县| 石狮市| 友谊县| 达拉特旗| 南平市| 木兰县| 屏东市| 吐鲁番市| 岐山县| 隆回县| 霍州市| 宣城市| 额敏县| 八宿县| 大冶市| 南昌市| 会理县| 虹口区| 贞丰县| 象山县| 江孜县| 山西省| 桑植县|