找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 16th China National Maosong Sun,Xiao

[復(fù)制鏈接]
樓主: supplementary
21#
發(fā)表于 2025-3-25 05:07:48 | 只看該作者
22#
發(fā)表于 2025-3-25 10:43:51 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:21 | 只看該作者
Employing Auto-annotated Data for Person Name Recognition in Judgment Documents In this paper, we focus on person name recognition in judgment documents. Owing to the lack of human-annotated data, we propose a joint learning approach, namely Aux-LSTM, to use a large scale of auto-annotated data to help human-annotated data (in a small size) for person name recognition. Specifi
24#
發(fā)表于 2025-3-25 19:15:50 | 只看該作者
Closed-Set Chinese Word Segmentation Based on Convolutional Neural Network Modell to each character, indicating its relative position within the word it belongs to. To do so, it first constructs shallow representations of characters by fusing unigram and bigram information in limited context window via an element-wise maximum operator, and then build up deep representations fro
25#
發(fā)表于 2025-3-25 21:35:32 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:13 | 只看該作者
27#
發(fā)表于 2025-3-26 07:30:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:14:41 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:21 | 只看該作者
Cost-Aware Learning Rate for Neural Machine Translationalgorithm for NMT sets a unified learning rate for each gold target word during training. However, words under different probability distributions should be handled differently. Thus, we propose a cost-aware learning rate method, which can produce different learning rates for words with different co
30#
發(fā)表于 2025-3-26 19:33:15 | 只看該作者
Integrating Word Sequences and Dependency Structures for Chemical-Disease Relation Extraction a .-max pooling convolutional neural network (CNN) to exploit word sequences and dependency structures for CDR extraction. Furthermore, an effective weighted context method is proposed to capture semantic information of word sequences. Our system extracts both intra- and inter-sentence level chemic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家口市| 三台县| 嘉定区| 漯河市| 丰台区| 毕节市| 平定县| 沈丘县| 营山县| 乡城县| 宕昌县| 厦门市| 乌拉特后旗| 修武县| 崇州市| 霍邱县| 循化| 云浮市| 双牌县| 镇平县| 白沙| 鹿邑县| 遂昌县| 达孜县| 庆元县| 大邑县| 石家庄市| 宁远县| 正宁县| 平原县| 嘉荫县| 商丘市| 武隆县| 玉门市| 乌鲁木齐市| 静乐县| 黑水县| 临泽县| 台东市| 乌拉特后旗| 利辛县|