找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chern-Simons Theory and Equivariant Factorization Algebras; Corina Keller Book 2019 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: 淹沒
11#
發(fā)表于 2025-3-23 12:52:42 | 只看該作者
Principal Bundles and Gauge Theory,al finite-dimensional vector space, then . : M → . is a vector field. More generally, we can consider a family of spaces {.}.?. varying over the points on M, that is .(.) ? . for each . ? .. A field . is then understood as a . from the spacetime manifold into the bundle of spaces over .. This is exa
12#
發(fā)表于 2025-3-23 16:13:19 | 只看該作者
-Algebras and Derived Formal Moduli Problems, space, comprising the study of ., which are spaces parameterizing equivalence classes of structures. With a . we thus mean the infinitesimal description of a moduli space, capturing the local structure around a given point. In this chapter we first address the classical theory of algebraic deformat
13#
發(fā)表于 2025-3-23 18:23:44 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:18 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:42 | 只看該作者
Chern-Simons Theory and Equivariant Factorization Algebras978-3-658-25338-7Series ISSN 2625-3577 Series E-ISSN 2625-3615
16#
發(fā)表于 2025-3-24 07:21:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:28:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:41:04 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:25 | 只看該作者
Factorization Algebras,n a precise way, by its behavior on smaller open sets. Since there is a close relation between prefactorization algebras and precosheaves, we can think of this local-to-global property as the analog of the gluing axiom for sheaves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
措勤县| 福安市| 金溪县| 石棉县| 建宁县| 双城市| 田林县| 许昌市| 灵宝市| 灵武市| 岳阳县| 紫金县| 新余市| 大洼县| 开平市| 光山县| 崇阳县| 中方县| 无为县| 平乡县| 宁夏| 南投县| 波密县| 武穴市| 平原县| 修水县| 堆龙德庆县| 开鲁县| 汉阴县| 吉安县| 昭通市| 淮北市| 西乌| 平江县| 简阳市| 藁城市| 桃江县| 长宁区| 上思县| 苍山县| 淳安县|