找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chern-Simons Theory and Equivariant Factorization Algebras; Corina Keller Book 2019 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
查看: 33724|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:03:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Chern-Simons Theory and Equivariant Factorization Algebras
編輯Corina Keller
視頻videohttp://file.papertrans.cn/225/224978/224978.mp4
概述Encoding non-perturbative phenomena in classical observables
叢書名稱BestMasters
圖書封面Titlebook: Chern-Simons Theory and Equivariant Factorization Algebras;  Corina Keller Book 2019 The Editor(s) (if applicable) and The Author(s), under
描述.Corina Keller studies non-perturbative facets of abelian Chern-Simons theories. This is a refinement of the entirely perturbative approach to classical Chern-Simons theory via homotopy factorization algebras of observables that arise from the associated formal moduli problem describing deformations of flat principal bundles with connections over the spacetime manifold. The author shows that for theories with abelian group structure, this factorization algebra of classical observables comes naturally equipped with an action of the gauge group, which allows to encode non-perturbative effects in the classical observables..About the Author:. .Corina Keller. currently is a doctoral student in the research group of Prof. Dr. Damien Calaque at the Université Montpellier, France. She is mostly interested in the mathematical study of field theories. Her master’s thesis was supervised by PD?Dr. Alessandro Valentino and Prof. Dr. Alberto Cattaneo at Zurich University, Switzerland..
出版日期Book 2019
關(guān)鍵詞Classical Chern-Simons Theory; Equivariant Factorization Algebras; Gauge Theory; Homological Algebra; Ma
版次1
doihttps://doi.org/10.1007/978-3-658-25338-7
isbn_softcover978-3-658-25337-0
isbn_ebook978-3-658-25338-7Series ISSN 2625-3577 Series E-ISSN 2625-3615
issn_series 2625-3577
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Chern-Simons Theory and Equivariant Factorization Algebras影響因子(影響力)




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras影響因子(影響力)學(xué)科排名




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras網(wǎng)絡(luò)公開度




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras被引頻次




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras被引頻次學(xué)科排名




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras年度引用




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras年度引用學(xué)科排名




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras讀者反饋




書目名稱Chern-Simons Theory and Equivariant Factorization Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:04:54 | 只看該作者
2625-3577 This is a refinement of the entirely perturbative approach to classical Chern-Simons theory via homotopy factorization algebras of observables that arise from the associated formal moduli problem describing deformations of flat principal bundles with connections over the spacetime manifold. The aut
板凳
發(fā)表于 2025-3-22 01:18:29 | 只看該作者
Radiometric Calibration in Thermal Infrared,the perturbative facets of .. For this purpose, we describe the local structure of the derived moduli space of flat abelian bundles over a closed oriented 3-manifold via its associated derived formal moduli problem.
地板
發(fā)表于 2025-3-22 06:23:32 | 只看該作者
Quantum Dot-Fluorescence-Based Biosensing,s on M, that is .(.) ? . for each . ? .. A field . is then understood as a . from the spacetime manifold into the bundle of spaces over .. This is exactly the idea encoded in the mathematical theory of .. Namely, fiber bundles provide a tool to describe the global structure of physical fields.
5#
發(fā)表于 2025-3-22 10:29:24 | 只看該作者
Description of the General Physical Problem,ion of a moduli space, capturing the local structure around a given point. In this chapter we first address the classical theory of algebraic deformation problems, before explaining how formal moduli problems arise as deformation functors in algebraic geometry.
6#
發(fā)表于 2025-3-22 15:29:42 | 只看該作者
7#
發(fā)表于 2025-3-22 19:02:35 | 只看該作者
Principal Bundles and Gauge Theory,s on M, that is .(.) ? . for each . ? .. A field . is then understood as a . from the spacetime manifold into the bundle of spaces over .. This is exactly the idea encoded in the mathematical theory of .. Namely, fiber bundles provide a tool to describe the global structure of physical fields.
8#
發(fā)表于 2025-3-22 22:31:03 | 只看該作者
-Algebras and Derived Formal Moduli Problems,ion of a moduli space, capturing the local structure around a given point. In this chapter we first address the classical theory of algebraic deformation problems, before explaining how formal moduli problems arise as deformation functors in algebraic geometry.
9#
發(fā)表于 2025-3-23 04:57:55 | 只看該作者
Book 2019al Chern-Simons theory via homotopy factorization algebras of observables that arise from the associated formal moduli problem describing deformations of flat principal bundles with connections over the spacetime manifold. The author shows that for theories with abelian group structure, this factori
10#
發(fā)表于 2025-3-23 07:42:05 | 只看該作者
Introduction,l- and quantum field theories. Motivated by their work, this master’s thesis aims at studying the factorization algebra of . observables arising from the perturbative facets of .. For this purpose, we describe the local structure of the derived moduli space of flat abelian bundles over a closed orie
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾城县| 南郑县| 克山县| 临海市| 察哈| 耿马| 长岭县| 龙游县| 临桂县| 灵台县| 绥德县| 隆德县| 彰化县| 龙游县| 屏边| 余庆县| 辰溪县| 平江县| 阳山县| 海阳市| 拜泉县| 凭祥市| 朝阳县| 鹤峰县| 塘沽区| 汨罗市| 佛教| 茶陵县| 阳泉市| 新密市| 布尔津县| 永胜县| 连南| 凤凰县| 峨眉山市| 新密市| 汝阳县| 炎陵县| 金阳县| 新河县| 汝城县|