找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chern-Simons Theory and Equivariant Factorization Algebras; Corina Keller Book 2019 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: 淹沒(méi)
11#
發(fā)表于 2025-3-23 12:52:42 | 只看該作者
Principal Bundles and Gauge Theory,al finite-dimensional vector space, then . : M → . is a vector field. More generally, we can consider a family of spaces {.}.?. varying over the points on M, that is .(.) ? . for each . ? .. A field . is then understood as a . from the spacetime manifold into the bundle of spaces over .. This is exa
12#
發(fā)表于 2025-3-23 16:13:19 | 只看該作者
-Algebras and Derived Formal Moduli Problems, space, comprising the study of ., which are spaces parameterizing equivalence classes of structures. With a . we thus mean the infinitesimal description of a moduli space, capturing the local structure around a given point. In this chapter we first address the classical theory of algebraic deformat
13#
發(fā)表于 2025-3-23 18:23:44 | 只看該作者
14#
發(fā)表于 2025-3-23 22:19:18 | 只看該作者
15#
發(fā)表于 2025-3-24 05:24:42 | 只看該作者
Chern-Simons Theory and Equivariant Factorization Algebras978-3-658-25338-7Series ISSN 2625-3577 Series E-ISSN 2625-3615
16#
發(fā)表于 2025-3-24 07:21:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:28:05 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:41:04 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:25 | 只看該作者
Factorization Algebras,n a precise way, by its behavior on smaller open sets. Since there is a close relation between prefactorization algebras and precosheaves, we can think of this local-to-global property as the analog of the gluing axiom for sheaves.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄢陵县| 安吉县| 铜鼓县| 略阳县| 建德市| 兴隆县| 宝鸡市| 河北区| 龙陵县| 繁昌县| 和政县| 砀山县| 胶南市| 项城市| 皮山县| 南通市| 延津县| 曲周县| 文登市| 施甸县| 宜昌市| 炉霍县| 南城县| 商都县| 黎川县| 穆棱市| 鄂托克旗| 建始县| 兰溪市| 西充县| 郧西县| 定兴县| 宕昌县| 昌宁县| 额尔古纳市| 博湖县| 惠东县| 龙泉市| 斗六市| 蕲春县| 白水县|