找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Nonlinearity, Complexity; The Dynamical Paradi A. Sengupta Book 2006 Springer-Verlag Berlin Heidelberg 2006 Chaos.Nonlinear Function

[復(fù)制鏈接]
樓主: 年邁
11#
發(fā)表于 2025-3-23 10:12:51 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:43 | 只看該作者
Tectonic settings of potassic igneous rocks,vant to a discussion about the applicability of the Tsallis generalization of canonical statistical mechanics. The critical attractors considered are those at the familiar pitchfork and tangent bifurcations and the period-doubling onset of chaos in unimodal maps of general nonlinearity ζ > 1. The no
13#
發(fā)表于 2025-3-23 21:31:29 | 只看該作者
14#
發(fā)表于 2025-3-24 01:54:47 | 只看該作者
15#
發(fā)表于 2025-3-24 05:46:18 | 只看該作者
https://doi.org/10.1007/BFb0017712rooted in the randomness generated by chaotic dynamics. The second point of view, put forward by Prigogine’s school, is that irreversibility is rooted in non-integrable dynamics, as defined by Poincaré. Non-integrability is associated with resonances. We consider a simple model of Brownian motion, a
16#
發(fā)表于 2025-3-24 06:38:55 | 只看該作者
17#
發(fā)表于 2025-3-24 14:25:47 | 只看該作者
Tectonic settings of potassic igneous rocks,l entropy of isolated, non-radiant, non-rotating black holes is traced, within an approach to quantum spacetime geometry known as Loop Quantum Gravity, to the degeneracy of boundary states of an .(2) Cherns Simons theory. Not only does one retrieve the area law for black hole entropy, an infinite se
18#
發(fā)表于 2025-3-24 14:52:24 | 只看該作者
Implications for mineral exploration,al a paradigm shift in the way we understand organization and leadership. Complexity theory alters core perceptions about the logic of organizational behavior and, consequently, “discovers” the significant importance of firms’ informal social dynamics (informal behaviors have long been treated as so
19#
發(fā)表于 2025-3-24 19:07:32 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:38 | 只看該作者
https://doi.org/10.1007/3-540-31757-0Chaos; Nonlinear Functional Analysis; Nonlinearity; complex system; complex systems; complexity; dynamisch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 08:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会理县| 若羌县| 滨海县| 西乌珠穆沁旗| 潮州市| 吴川市| 西贡区| 巴林右旗| 江陵县| 公安县| 潞城市| 济阳县| 五莲县| 虹口区| 金湖县| 高雄县| 南岸区| 沂水县| 邮箱| 华亭县| 石门县| 辉南县| 开远市| 桐乡市| 南岸区| 共和县| 平舆县| 大荔县| 杨浦区| 增城市| 平利县| 濉溪县| 井研县| 霸州市| 郸城县| 大关县| 贡山| 蛟河市| 淮南市| 宝清县| 富锦市|