找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Nonlinearity, Complexity; The Dynamical Paradi A. Sengupta Book 2006 Springer-Verlag Berlin Heidelberg 2006 Chaos.Nonlinear Function

[復(fù)制鏈接]
樓主: 年邁
11#
發(fā)表于 2025-3-23 10:12:51 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:43 | 只看該作者
Tectonic settings of potassic igneous rocks,vant to a discussion about the applicability of the Tsallis generalization of canonical statistical mechanics. The critical attractors considered are those at the familiar pitchfork and tangent bifurcations and the period-doubling onset of chaos in unimodal maps of general nonlinearity ζ > 1. The no
13#
發(fā)表于 2025-3-23 21:31:29 | 只看該作者
14#
發(fā)表于 2025-3-24 01:54:47 | 只看該作者
15#
發(fā)表于 2025-3-24 05:46:18 | 只看該作者
https://doi.org/10.1007/BFb0017712rooted in the randomness generated by chaotic dynamics. The second point of view, put forward by Prigogine’s school, is that irreversibility is rooted in non-integrable dynamics, as defined by Poincaré. Non-integrability is associated with resonances. We consider a simple model of Brownian motion, a
16#
發(fā)表于 2025-3-24 06:38:55 | 只看該作者
17#
發(fā)表于 2025-3-24 14:25:47 | 只看該作者
Tectonic settings of potassic igneous rocks,l entropy of isolated, non-radiant, non-rotating black holes is traced, within an approach to quantum spacetime geometry known as Loop Quantum Gravity, to the degeneracy of boundary states of an .(2) Cherns Simons theory. Not only does one retrieve the area law for black hole entropy, an infinite se
18#
發(fā)表于 2025-3-24 14:52:24 | 只看該作者
Implications for mineral exploration,al a paradigm shift in the way we understand organization and leadership. Complexity theory alters core perceptions about the logic of organizational behavior and, consequently, “discovers” the significant importance of firms’ informal social dynamics (informal behaviors have long been treated as so
19#
發(fā)表于 2025-3-24 19:07:32 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:38 | 只看該作者
https://doi.org/10.1007/3-540-31757-0Chaos; Nonlinear Functional Analysis; Nonlinearity; complex system; complex systems; complexity; dynamisch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 08:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
增城市| 靖西县| 武威市| 嵊州市| 隆安县| 南宫市| 九龙城区| 桐城市| 彭泽县| 合川市| 黔西县| 临西县| 东平县| 上饶县| 敦煌市| 云和县| 雷波县| 泗水县| 横峰县| 阿坝县| 敦化市| 容城县| 兴隆县| 琼海市| 隆林| 桃园县| 福海县| 垣曲县| 苍梧县| 林芝县| 永城市| 雷山县| 凤凰县| 永德县| 开平市| 黎川县| 民勤县| 湘潭市| 贵德县| 邵阳市| 门源|