找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Nonlinearity, Complexity; The Dynamical Paradi A. Sengupta Book 2006 Springer-Verlag Berlin Heidelberg 2006 Chaos.Nonlinear Function

[復(fù)制鏈接]
查看: 23352|回復(fù): 43
樓主
發(fā)表于 2025-3-21 19:48:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Chaos, Nonlinearity, Complexity
副標(biāo)題The Dynamical Paradi
編輯A. Sengupta
視頻videohttp://file.papertrans.cn/224/223910/223910.mp4
概述Carefully edited and selected outcome of the international workshop IIT held in Kanpur, India March 2004 featuring a focused debate on the mathematics and physics of Chaos, complexity and the Nonlinea
叢書名稱Studies in Fuzziness and Soft Computing
圖書封面Titlebook: Chaos, Nonlinearity, Complexity; The Dynamical Paradi A. Sengupta Book 2006 Springer-Verlag Berlin Heidelberg 2006 Chaos.Nonlinear Function
描述I think the next century will be the century of complexity. We have already discovered the basic laws that govern matter and understand all the normal situations. We don’t know how the laws ?t together, and what happens under extreme conditions. But I expect we will ?nd a complete uni?ed theory sometime this century. There is no limit to the complexity that we can build using those basic laws. Stephen Hawking, January 2000. We don’t know what we are talking about. Many of us believed that string theory was a very dramatic break with our previous notions of quantum theory. But now we learn that string theory, well, is not that much of a break. The state of physics today is like it was when we were mysti?ed by radioactivity. They were missing something absolutely fundamental. We are missing perhaps something as profound as they were back then. Nobel Laureate David Gross, December 2005. This volume is essentially a compilation of papers presented at the Int- national Workshop on Mathematics and Physics of Complex and Nonlinear Systems that was held at Indian Institute of Technology Kanpur, March 14 – 26, 2004 on the theme ChaNoXity: The Nonlinear Dynamics of Nature.
出版日期Book 2006
關(guān)鍵詞Chaos; Nonlinear Functional Analysis; Nonlinearity; complex system; complex systems; complexity; dynamisch
版次1
doihttps://doi.org/10.1007/3-540-31757-0
isbn_softcover978-3-642-42160-0
isbn_ebook978-3-540-31757-9Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

書目名稱Chaos, Nonlinearity, Complexity影響因子(影響力)




書目名稱Chaos, Nonlinearity, Complexity影響因子(影響力)學(xué)科排名




書目名稱Chaos, Nonlinearity, Complexity網(wǎng)絡(luò)公開度




書目名稱Chaos, Nonlinearity, Complexity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chaos, Nonlinearity, Complexity被引頻次




書目名稱Chaos, Nonlinearity, Complexity被引頻次學(xué)科排名




書目名稱Chaos, Nonlinearity, Complexity年度引用




書目名稱Chaos, Nonlinearity, Complexity年度引用學(xué)科排名




書目名稱Chaos, Nonlinearity, Complexity讀者反饋




書目名稱Chaos, Nonlinearity, Complexity讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:21:37 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:27 | 只看該作者
5#
發(fā)表于 2025-3-22 08:57:00 | 只看該作者
Foundations of Nonextensive Statistical Mechanics,ts, the counting algorithm and the evaluation of the density of states can appropriately be generalized for describing the power-law distributions. The generalized Boltzmann equation and the associated .-theorem are also considered for the Tsallis entropy and the maximum Tsallis entropy distribution.
6#
發(fā)表于 2025-3-22 14:52:25 | 只看該作者
Power Law and Tsallis Entropy: Network Traffic and Applications,work performance. Highlighting the salient features of Tsallis entropy, the axiomatic foundations of parametric entropies are also discussed. Possible application of nonextensive thermodynamics to study the macroscopic behavior of broadband network is outlined.
7#
發(fā)表于 2025-3-22 17:19:15 | 只看該作者
8#
發(fā)表于 2025-3-22 23:21:13 | 只看該作者
9#
發(fā)表于 2025-3-23 03:58:34 | 只看該作者
10#
發(fā)表于 2025-3-23 09:37:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石城县| 康乐县| 广平县| 桑日县| 天津市| 师宗县| 静海县| 武清区| 沧州市| 宁波市| 汾阳市| 扬中市| 永康市| 通化县| 蒙城县| 苍南县| 红桥区| 彭州市| 祁东县| 嘉善县| 凤冈县| 通山县| 大冶市| 城步| 湘潭市| 山西省| 分宜县| 民丰县| 瑞金市| 钟祥市| 阿克苏市| 尤溪县| 云浮市| 唐海县| 孙吴县| 广昌县| 济阳县| 商河县| 荥阳市| 万安县| 阿城市|