找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos Control; Theory and Applicati Guanrong Chen,Xinghuo Yu Book 2003 Springer-Verlag Berlin Heidelberg 2003 Chaos Anti-Control.Chaos Sync

[復(fù)制鏈接]
樓主: Bush
51#
發(fā)表于 2025-3-30 11:30:24 | 只看該作者
Der Polyneuropathie auf der Spur,e the communication performances. Popular communication schemes in the literature, including chaotic spreading sequence (CSS), chaotic carrier (CC), chaos masking (CM), chaos shift keying (CSK), differential chaos shift keying (DCSK) and chaotic parameter modulation (CPM), are discussed here and the
52#
發(fā)表于 2025-3-30 15:01:38 | 只看該作者
Der Polyneuropathie auf der Spur,tion quality for several scenarios. We here briefly review the main steps in this derivation and report the corresponding theoretical prediction. In particular we show that the use of the so-called statistical approach to the study of a chaotic dynamical system allows to characterize and control the
53#
發(fā)表于 2025-3-30 20:28:52 | 只看該作者
Polyneuropathie mit Erfolg behandeln,lgorithm can be used to obtain any desired UPO embedded in a chaotic attractor, and the UPO can be stabilized by a simple state feedback control. Some illustrative examples are shown for demonstration.
54#
發(fā)表于 2025-3-30 22:37:33 | 只看該作者
55#
發(fā)表于 2025-3-31 02:21:55 | 只看該作者
https://doi.org/10.1007/b79666Chaos Anti-Control; Chaos Synchronization; chaos; chaos control; communication; control; control theory; mo
56#
發(fā)表于 2025-3-31 07:52:13 | 只看該作者
978-3-540-40405-7Springer-Verlag Berlin Heidelberg 2003
57#
發(fā)表于 2025-3-31 12:44:42 | 只看該作者
Was versteht man unter Polyneuropathie?,We discuss the effect on finite machine implementation of chaotic system on randomness. We show that the most significant bit even for fully developed chaotic systems implemented with high precision (using 1000-bit arithmetics) is not random. We propose chaos-based pseudo-random bit generators and discuss their efficient software implementation.
58#
發(fā)表于 2025-3-31 14:24:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夹江县| 枣阳市| 凤台县| 上虞市| 莱芜市| 宁德市| 望奎县| 甘肃省| 高唐县| 敦化市| 棋牌| 包头市| 岫岩| 靖州| 苍溪县| 米脂县| 京山县| 晋城| 淅川县| 农安县| 彝良县| 旌德县| 阿克| 海安县| 宝清县| 福鼎市| 大悟县| 汉寿县| 南阳市| 清远市| 澄江县| 辉南县| 清苑县| 昌图县| 衡南县| 海宁市| 梓潼县| 库车县| 呼和浩特市| 钟山县| 宜川县|