找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos Control; Theory and Applicati Guanrong Chen,Xinghuo Yu Book 2003 Springer-Verlag Berlin Heidelberg 2003 Chaos Anti-Control.Chaos Sync

[復制鏈接]
樓主: Bush
31#
發(fā)表于 2025-3-26 21:30:27 | 只看該作者
32#
發(fā)表于 2025-3-27 05:10:23 | 只看該作者
Control of Chaos Statistics for Optimization of DS-CDMA Systems,tion quality for several scenarios. We here briefly review the main steps in this derivation and report the corresponding theoretical prediction. In particular we show that the use of the so-called statistical approach to the study of a chaotic dynamical system allows to characterize and control the
33#
發(fā)表于 2025-3-27 08:43:28 | 只看該作者
34#
發(fā)表于 2025-3-27 13:26:46 | 只看該作者
Control of Chaos Statistics for the Generation of Timing Signals with Improved EMC,als widely employed in digital circuits, or the control pulse-trains used in switching power converters. We here focus on the methodologies where electromagnetic compatibility is enhanced by means of . rather than relying on shields and filtered cables and connectors. More specifically, the introduc
35#
發(fā)表于 2025-3-27 16:41:15 | 只看該作者
Odd Number Limitation in Delayed Feedback Control,inal DFC restricts the application to a special class of chaotic systems. So far, various methods have been developed to overcome the limitation. In this chapter, we show their key concepts to solve the problem.
36#
發(fā)表于 2025-3-27 19:06:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:49:37 | 只看該作者
Neural Network Design for Chaos Synchronization,rrent neural networks and inverse optimal control for nonlinear systems. On the basis of the last technique, chaos is first produced by a stable recurrent neural network; an adaptive recurrent neural controller is then developed for chaos synchronization.
38#
發(fā)表于 2025-3-28 05:31:34 | 只看該作者
Chaotification via Feedback: The Discrete Case,c, or to enhance the existing chaos of a chaotic system, via feedback control techniques. Only the discrete case is discussed in detail. A basic and yet “universal” approach to discrete chaotification is described, with a simple example worked out in a step-by-step fashion for illustration.
39#
發(fā)表于 2025-3-28 08:44:57 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 13:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
延长县| 遂平县| 嘉定区| 武宣县| 乌什县| 崇阳县| 阿鲁科尔沁旗| 景泰县| 庆阳市| 淄博市| 开封县| 白水县| 财经| 博兴县| 黔东| 晋州市| 长治市| 元氏县| 昌平区| 本溪| 班玛县| 丰镇市| 礼泉县| 武汉市| 陇川县| 瑞金市| 临安市| 汶川县| 阿鲁科尔沁旗| 卫辉市| 弥渡县| 长泰县| 古浪县| 本溪| 隆尧县| 鱼台县| 罗江县| 叶城县| 大荔县| 万山特区| 汾西县|