找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Change Point Analysis for Time Series; Lajos Horváth,Gregory Rice Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusi

[復(fù)制鏈接]
樓主: 壓榨機(jī)
21#
發(fā)表于 2025-3-25 05:23:39 | 只看該作者
22#
發(fā)表于 2025-3-25 08:39:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:42:50 | 只看該作者
0172-7397 modern settings of high--dimensional, functional, and heterThis volume provides a comprehensive survey that covers various modern methods used for detecting and estimating change points in time series and their models. The book primarily focuses on asymptotic theory and practical applications of ch
25#
發(fā)表于 2025-3-25 22:54:58 | 只看該作者
26#
發(fā)表于 2025-3-26 00:50:41 | 只看該作者
27#
發(fā)表于 2025-3-26 08:09:15 | 只看該作者
Cumulative Sum Processes,ved data. As such, we begin by developing a comprehensive asymptotic theory for CUSUM processes under conditions that allow for serial dependence in the observations. This includes a careful analysis of how weights applied to the CUSUM process affect the limiting distribution of its functionals, and extensions to multivariate observations.
28#
發(fā)表于 2025-3-26 09:37:32 | 只看該作者
Regression Models,parametric regression model. In this case a change in the relationship may be characterized by a change in the model parameters. This chapter is devoted to the development of asymptotic methods to perform change point analysis in the context of regression models.
29#
發(fā)表于 2025-3-26 12:48:48 | 只看該作者
Change Point Analysis of the Mean,points in the series, the functionals of the CUSUM process that we have considered should be consistent in the sense that they diverge in probability to positive infinity as the sample size grows. One goal of this chapter is to carefully quantify the asymptotic behaviour of the CUSUM process in the presence of change points.
30#
發(fā)表于 2025-3-26 19:10:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温泉县| 四会市| 永福县| 抚远县| 绥滨县| 巴塘县| 邵东县| 桐柏县| 道孚县| 合山市| 合川市| 英德市| 芦溪县| 灯塔市| 上高县| 浦东新区| 集安市| 清原| 炎陵县| 东台市| 灌阳县| 科技| 涪陵区| 江华| 正蓝旗| 广河县| 长汀县| 云安县| 黑水县| 维西| 武川县| 常宁市| 岳阳县| 封丘县| 盐边县| 潼关县| 丹凤县| 靖远县| 泽库县| 阿拉尔市| 西宁市|