找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Change Point Analysis for Time Series; Lajos Horváth,Gregory Rice Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusi

[復制鏈接]
查看: 14880|回復: 39
樓主
發(fā)表于 2025-3-21 18:47:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Change Point Analysis for Time Series
編輯Lajos Horváth,Gregory Rice
視頻videohttp://file.papertrans.cn/224/223708/223708.mp4
概述Provides a comprehensive review of asymptotic methods in change point analysis for time series.Extends classical change point methods to the modern settings of high--dimensional, functional, and heter
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Change Point Analysis for Time Series;  Lajos Horváth,Gregory Rice Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusi
描述This volume provides a comprehensive survey that covers various modern methods used for detecting and estimating change points in time series and their models. The book primarily focuses on asymptotic theory and practical applications of change point analysis. The methods discussed in the book go beyond the traditional change point methods for univariate and multivariate series. It also explores techniques for handling heteroscedastic series, high-dimensional series, and functional data. While the primary emphasis is on retrospective change point analysis, the book also presents sequential "on-line" methods for detecting change points in real-time scenarios. Each chapter in the book includes multiple data examples that illustrate the practical application of the developed results. These examples cover diverse fields such as economics, finance, environmental studies, and health data analysis. To reinforce the understanding of the material, each chapter concludes with several exercises.Additionally, the book provides a discussion of background literature, allowing readers to explore further resources for in-depth knowledge on specific topics. Overall, "Change Point Analysis for Time
出版日期Book 2024
關鍵詞Change Point Analysis; Time Series; ARMA; GARCH; Dynamic Linear Models; Heteroscedastic Time Series; Funct
版次1
doihttps://doi.org/10.1007/978-3-031-51609-2
isbn_softcover978-3-031-51611-5
isbn_ebook978-3-031-51609-2Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Change Point Analysis for Time Series影響因子(影響力)




書目名稱Change Point Analysis for Time Series影響因子(影響力)學科排名




書目名稱Change Point Analysis for Time Series網(wǎng)絡公開度




書目名稱Change Point Analysis for Time Series網(wǎng)絡公開度學科排名




書目名稱Change Point Analysis for Time Series被引頻次




書目名稱Change Point Analysis for Time Series被引頻次學科排名




書目名稱Change Point Analysis for Time Series年度引用




書目名稱Change Point Analysis for Time Series年度引用學科排名




書目名稱Change Point Analysis for Time Series讀者反饋




書目名稱Change Point Analysis for Time Series讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:38:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:06:39 | 只看該作者
Lajos Horváth,Gregory RiceProvides a comprehensive review of asymptotic methods in change point analysis for time series.Extends classical change point methods to the modern settings of high--dimensional, functional, and heter
地板
發(fā)表于 2025-3-22 08:13:06 | 只看該作者
5#
發(fā)表于 2025-3-22 10:15:35 | 只看該作者
https://doi.org/10.1007/978-981-16-2442-1A crucial step in approximating the distribution of the CUSUM statistics introduced in Chaps. . and . is estimating the variance parameter . describing the limiting variance of the partial sum of the observations under Assumption ..
6#
發(fā)表于 2025-3-22 13:40:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:15:50 | 只看該作者
https://doi.org/10.1007/3-540-28333-1oaches to detect such a change point lead to the consideration of weighted functionals of the cumulative sum (CUSUM) processes computed from the observed data. As such, we begin by developing a comprehensive asymptotic theory for CUSUM processes under conditions that allow for serial dependence in t
8#
發(fā)表于 2025-3-22 21:26:31 | 只看該作者
9#
發(fā)表于 2025-3-23 03:03:34 | 只看該作者
10#
發(fā)表于 2025-3-23 07:37:16 | 只看該作者
The Identified Local Characteristics,ve generally taken into consideration potential serial dependence in the observations under study, in this chapter we are concerned with detecting change points in the parameters for models specifically designed to capture the serial dependence structure of a time series.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
民勤县| 许昌县| 泰安市| 哈巴河县| 封丘县| 镇赉县| 盐津县| 全州县| 利津县| 绥滨县| 宜城市| 微山县| 阳谷县| 老河口市| 庆安县| 抚顺市| 海盐县| 龙井市| 万安县| 方城县| 博白县| 东明县| 滁州市| 蒙阴县| 牙克石市| 疏附县| 鄯善县| 青铜峡市| 志丹县| 融水| 鹤峰县| 会宁县| 大冶市| 育儿| 芦溪县| 贺州市| 陇西县| 白城市| 靖安县| 德格县| 元朗区|