找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Categorical Perspectives; Jürgen Koslowski,Austin Melton Book 2001 Springer Science+Business Media New York 2001 Abelian group.Category th

[復(fù)制鏈接]
樓主: cerebellum
41#
發(fā)表于 2025-3-28 17:24:55 | 只看該作者
https://doi.org/10.1007/978-3-319-01559-0convergence spaces such as topological spaces, pretopological spaces (=closure spaces in the sense of ?ech [5]), limit spaces (in the sense of Kowalsky [10] and Fischer [6]) or Kent convergence spaces can be characterized when they are considered as semiuniform convergence spaces (provided all conve
42#
發(fā)表于 2025-3-28 21:39:13 | 只看該作者
https://doi.org/10.1007/978-3-319-01559-0 a linear system (.) consisting of a Hilbert or Euclidean space . and a continuous linear operator .: . → . and satisfying the equivariancy condition .. = . ○ .. Our main results concern linearization by systems (.) in which the norm of . is < 1. By a weakening of the equivariancy condition . ○ . =
43#
發(fā)表于 2025-3-29 00:43:32 | 只看該作者
Capital-Building in Post-War Germany these properties to computer science..A metric space (.) is called . [6] (or . [4], or . [9]) if its metric satisfies the strong triangle axiom: .This is usually called the Ultrametric Axiom. Ultrametric spaces were described up to homeomorphism in [3, 21], up to uniform equivalence in [10], and up
44#
發(fā)表于 2025-3-29 06:47:43 | 只看該作者
Daniel McInerney,Pieter Kempeneersre exactly those isomorphic to categories of modules that are fully embedded into Ab. Rings giving rise to such modules are completely described. One of the curious special cases is provided by the full subcategory of Ab consisting of all torsion-free, divisible Abelian groups, which can be characte
45#
發(fā)表于 2025-3-29 09:00:49 | 只看該作者
9樓
46#
發(fā)表于 2025-3-29 12:25:00 | 只看該作者
9樓
47#
發(fā)表于 2025-3-29 18:17:35 | 只看該作者
10樓
48#
發(fā)表于 2025-3-29 22:42:07 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 03:16:44 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 06:41:20 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佳木斯市| 通江县| 邳州市| 垫江县| 杭锦后旗| 石林| 永清县| 大埔区| 蓬溪县| 泌阳县| 大余县| 大名县| 张掖市| 漳浦县| 互助| 沙坪坝区| 赣州市| 青铜峡市| 绥江县| 鞍山市| 合作市| 阜阳市| 舟曲县| 山阴县| 焦作市| 龙井市| 武定县| 平遥县| 河曲县| 辽阳县| 奉新县| 合阳县| 南投县| 孙吴县| 牟定县| 平南县| 苏州市| 东安县| 南部县| 贡嘎县| 崇信县|