找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Categorical Perspectives; Jürgen Koslowski,Austin Melton Book 2001 Springer Science+Business Media New York 2001 Abelian group.Category th

[復(fù)制鏈接]
樓主: cerebellum
21#
發(fā)表于 2025-3-25 07:21:01 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:38 | 只看該作者
23#
發(fā)表于 2025-3-25 15:11:09 | 只看該作者
24#
發(fā)表于 2025-3-25 15:54:20 | 只看該作者
25#
發(fā)表于 2025-3-25 22:53:23 | 只看該作者
Organotrifluoroborate Coupling,We give an overview of the long and distinguished career of Professor George E. Strecker in the fields of topology and, in particular, categorical topology.
26#
發(fā)表于 2025-3-26 01:28:30 | 只看該作者
Bell Tests in Bipartite Scenarios,I am indeed honored that a gathering was organized to celebrate my sixtieth birthday. When I turned forty, Horst Herrlich told me that at that point I was entitled to wax philosophical.. So now I feel that I am more than entitled — I’m actually obliged to do so. So here goes…
27#
發(fā)表于 2025-3-26 07:03:20 | 只看該作者
https://doi.org/10.1007/978-3-319-01405-0A brief survey of the development of the theory of closure operators is presented. Results concerning the applications of the theory to epimorphisms, separation, compactness and connectedness are also included together with a number of supporting examples.
28#
發(fā)表于 2025-3-26 11:16:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:09:34 | 只看該作者
Daniel McInerney,Pieter KempeneersWe prove that the copnumber of a finite connected graph of genus . is bounded by [3/2.]+3. In particular this means that the copnumber of a toroidal graph is bounded by 4. We also sketch a proof that the copnumber of a graph of genus 2 is bounded by 5.
30#
發(fā)表于 2025-3-26 17:01:43 | 只看該作者
Categories: A Free Tour,Category theory plays an important role as a unifying agent in a rapidly expanding universe of mathematics. In this paper, an introduction is given to the basic definitions of category theory, as well as to more advanced concepts such as adjointness, factorization systems and cartesian closedness.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西林县| 柳河县| 镇宁| 英超| 凌源市| 桦川县| 和政县| 建湖县| 鸡东县| 留坝县| 德兴市| 襄城县| 名山县| 静宁县| 桃园市| 宜君县| 察哈| 英吉沙县| 聂拉木县| 大竹县| 丹棱县| 乌拉特中旗| 社旗县| 建始县| 阿荣旗| 合水县| 和林格尔县| 琼海市| 乌拉特后旗| 勐海县| 长葛市| 涿鹿县| 钟山县| 江达县| 固镇县| 遂平县| 博爱县| 靖安县| 连平县| 高雄市| 深水埗区|