找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations II; Mariano Giaquinta,Stefan Hildebrandt Book 2004 Springer-Verlag Berlin Heidelberg 2004 Calculus of Variations.Co

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:31:42 | 只看該作者
Legendre Transformation, Hamiltonian Systems, Convexity, Field Theoriesations to the canonical formalism of Hamilton—Jacobi, which in some sense is the dual picture of the first. The . transforming one formalism into the other is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeom
22#
發(fā)表于 2025-3-25 08:34:51 | 只看該作者
Parametric Variational Integralsls of the form., whose integrand .(.)is positively homogeneous of first degree with respect to .. Such integrals are invariant with respect to transformations of the parameter ., and therefore they play an important role in geometry. A very important example of integrals of the type (1) is furnished
23#
發(fā)表于 2025-3-25 14:54:39 | 只看該作者
Hamilton-Jacobi Theory and Canonical Transformations role in the development of the mathematical foundations of quantum mechanics as well as in the genesis of an analysis on manifolds. This theory is not only based on the fundamental work of Hamilton and Jacobi, but it also incorporates ideas of predecessors such as Fermat, Newton, Huygens and Johann
24#
發(fā)表于 2025-3-25 16:43:41 | 只看該作者
Partial Differential Equations of First Order and Contact Transformationsf first order and to Lie’s theory of contact transformations. Nevertheless the results presented here are closely related to the rest of the book, in particular to field theory (Chapter 6) and to Hamilton—Jacobi theory (Chapter 9).
25#
發(fā)表于 2025-3-25 20:49:57 | 只看該作者
7樓
26#
發(fā)表于 2025-3-26 00:58:10 | 只看該作者
8樓
27#
發(fā)表于 2025-3-26 04:39:26 | 只看該作者
8樓
28#
發(fā)表于 2025-3-26 11:11:19 | 只看該作者
8樓
29#
發(fā)表于 2025-3-26 14:42:09 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 17:16:27 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚志市| 历史| 彭山县| 文安县| 万州区| 德兴市| 兰考县| 九江市| 绩溪县| 上犹县| 疏附县| 库伦旗| 交口县| 安塞县| 柳河县| 长宁区| 三都| 茶陵县| 微博| 获嘉县| 通海县| 泊头市| 称多县| 全椒县| 宜君县| 奉贤区| 石泉县| 南开区| 高清| 定远县| 枝江市| 屏山县| 东乡族自治县| 阜宁县| 阳谷县| 惠东县| 榕江县| 湟源县| 合川市| 泽普县| 色达县|