找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus of Variations II; Mariano Giaquinta,Stefan Hildebrandt Book 2004 Springer-Verlag Berlin Heidelberg 2004 Calculus of Variations.Co

[復(fù)制鏈接]
查看: 15952|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:49:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Calculus of Variations II
編輯Mariano Giaquinta,Stefan Hildebrandt
視頻videohttp://file.papertrans.cn/221/220881/220881.mp4
叢書名稱Grundlehren der mathematischen Wissenschaften
圖書封面Titlebook: Calculus of Variations II;  Mariano Giaquinta,Stefan Hildebrandt Book 2004 Springer-Verlag Berlin Heidelberg 2004 Calculus of Variations.Co
描述This book describes the classical aspects of the variational calculus which are of interest to analysts, geometers and physicists alike. Volume 1 deals with the for- mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as weIl as Hamilton- Jacobi theory and the classical theory of partial differential equations of first order. In a subsequent treatise we shall describe developments arising from Hilbert‘s 19th and 20th problems, especially direct methods and regularity theory. Of the classical variational calculus we have particularly emphasized the often neglected theory of inner variations, i. e. of variations of the independent variables, which is a source of useful information such as monotonicity for- mulas, conformality relations and conservation laws. The combined variation of dependent and independent variables leads to the general conservation laws of Emmy Noether, an important tool in exploitingsymmetries. Other parts of this volume deal with Legendre-Jacobi theory and with field theories. In particular we give a detailed presentation of one-dimensional field theory for non para- metric and p
出版日期Book 2004
關(guān)鍵詞Calculus of Variations; Convexity; Hamiltonian Formalism; Lagrangian Formalism; differential equation
版次1
doihttps://doi.org/10.1007/978-3-662-06201-2
isbn_softcover978-3-642-08192-7
isbn_ebook978-3-662-06201-2Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Calculus of Variations II影響因子(影響力)




書目名稱Calculus of Variations II影響因子(影響力)學(xué)科排名




書目名稱Calculus of Variations II網(wǎng)絡(luò)公開度




書目名稱Calculus of Variations II網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Calculus of Variations II被引頻次




書目名稱Calculus of Variations II被引頻次學(xué)科排名




書目名稱Calculus of Variations II年度引用




書目名稱Calculus of Variations II年度引用學(xué)科排名




書目名稱Calculus of Variations II讀者反饋




書目名稱Calculus of Variations II讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:34:35 | 只看該作者
Studies in Computational Intelligencef first order and to Lie’s theory of contact transformations. Nevertheless the results presented here are closely related to the rest of the book, in particular to field theory (Chapter 6) and to Hamilton—Jacobi theory (Chapter 9).
板凳
發(fā)表于 2025-3-22 03:18:43 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:30 | 只看該作者
5#
發(fā)表于 2025-3-22 12:13:00 | 只看該作者
https://doi.org/10.1007/978-3-662-06201-2Calculus of Variations; Convexity; Hamiltonian Formalism; Lagrangian Formalism; differential equation
6#
發(fā)表于 2025-3-22 14:31:21 | 只看該作者
978-3-642-08192-7Springer-Verlag Berlin Heidelberg 2004
7#
發(fā)表于 2025-3-22 20:24:37 | 只看該作者
Huajin Tang,Kay Chen Tan,Zhang Yiations to the canonical formalism of Hamilton—Jacobi, which in some sense is the dual picture of the first. The . transforming one formalism into the other is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeom
8#
發(fā)表于 2025-3-22 23:46:11 | 只看該作者
Studies in Computational Intelligencels of the form., whose integrand .(.)is positively homogeneous of first degree with respect to .. Such integrals are invariant with respect to transformations of the parameter ., and therefore they play an important role in geometry. A very important example of integrals of the type (1) is furnished
9#
發(fā)表于 2025-3-23 02:53:28 | 只看該作者
10#
發(fā)表于 2025-3-23 07:59:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 吴川市| 久治县| 邳州市| 静海县| 安塞县| 光山县| 诸暨市| 青海省| 潼南县| 恩平市| 泰和县| 乾安县| 华宁县| 南涧| 东方市| 大石桥市| 新平| 泰和县| 自贡市| 宁强县| 抚远县| 乌拉特后旗| 庐江县| 泸西县| 怀宁县| 重庆市| 青州市| 理塘县| 沙湾县| 湘乡市| 蚌埠市| 荣成市| 夏邑县| 泸水县| 澎湖县| 鄂托克前旗| 静海县| 宜兰县| 新化县| 温泉县|