找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[復制鏈接]
樓主: 涌出
21#
發(fā)表于 2025-3-25 05:56:59 | 只看該作者
New Perspectives in German Political Studieses of the complex projective space are inherited from those of the sphere. Especially, at the end of this section, we prove that the complex projective space has constant holomorphic sectional curvature.
22#
發(fā)表于 2025-3-25 07:52:51 | 只看該作者
23#
發(fā)表于 2025-3-25 14:04:19 | 只看該作者
Perspectives on Geographical Marginalitych satisfy a certain condition. The condition that the shape operator is parallel is its special case. In this section we give the proof of this classification (in the specific case .) and furthermore, we show that the algebraic condition (13.5) on the shape operator implies that it is parallel.
24#
發(fā)表于 2025-3-25 18:23:20 | 只看該作者
https://doi.org/10.1007/978-3-319-59002-8her words, for the curve . without torsion, there exists a 2-dimensional totally geodesic subspace .. such that .. In general, a curve . is a submanifold of codimension 2 of .., but if its torsion is zero, it can be regarded as a submanifold of codimension 1 in .., that is, the codimension is reduce
25#
發(fā)表于 2025-3-25 20:15:32 | 只看該作者
26#
發(fā)表于 2025-3-26 00:08:16 | 只看該作者
Armand Faganel,Anita Trnav?evi?. is the distinguished normal vector field, used to define the almost contact structure . on ., induced from the almost complex structure . of .. Moreover, since a real hypersurface . of a K?hler manifold . has two geometric structures: an almost contact structure . and a submanifold structure repre
27#
發(fā)表于 2025-3-26 07:04:13 | 只看該作者
The principal circle bundle S2n+1(Pn(C), S1),es of the complex projective space are inherited from those of the sphere. Especially, at the end of this section, we prove that the complex projective space has constant holomorphic sectional curvature.
28#
發(fā)表于 2025-3-26 10:45:09 | 只看該作者
Hypersurfaces of a Riemannian manifold of constant curvature,consider hypersurfaces of a Riemannian manifold of constant curvature. This research, combined with the results obtained in Section 10, will contribute to studying real hypersurfaces of complex projective space in Section 16.
29#
發(fā)表于 2025-3-26 14:32:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:01:59 | 只看該作者
Codimension reduction of a submanifold,her words, for the curve . without torsion, there exists a 2-dimensional totally geodesic subspace .. such that .. In general, a curve . is a submanifold of codimension 2 of .., but if its torsion is zero, it can be regarded as a submanifold of codimension 1 in .., that is, the codimension is reduced from 2 to 1.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南安市| 吉安县| 双鸭山市| 浮梁县| 普格县| 乐陵市| 江川县| 陆丰市| 罗甸县| 清水县| 姜堰市| 肥西县| 井陉县| 剑阁县| 申扎县| 武冈市| 武鸣县| 黑山县| 江川县| 平远县| 枣强县| 扎囊县| 连江县| 哈密市| 临颍县| 马鞍山市| 绥江县| 民丰县| 宁晋县| 沁阳市| 视频| 德兴市| 南溪县| 安平县| 濉溪县| 云浮市| 资中县| 田林县| 天峨县| 文昌市| 云浮市|